

Aquatic Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site Vershire, Vermont

EPA Contract EP-W-06-017

Prepared for:

U.S. Environmental Protection Agency Office of Environmental Measurement and Evaluation US EPA – Region I 11 Technology Drive North Chelmsford, MA 01863

Prepared by:

TechLaw, Inc. Environmental Services Assistance Team (ESAT) The Wannalancit Mills, 175 Cabot Street, Suite 415 Lowell, MA 01865

June 2010

TABLE OF CONTENTS

EXECUTIVE SUMMARY	x
E.1 INTRODUCTION	x
E.2 RISK ANALYSIS	x
E.3 GENERAL CONCLUSIONS OF THE BERA	xii
E.3.1 Benthic invertebrate community	xii
E.3.1.1 The ponds on the east branch of Ely Brook	xi\
E.3.1.2 The main stem of Ely Brook	
E.3.1.3 Schoolhouse Brook	
E.3.1.4 The EBOR	
E.3.2 Water column invertebrate community	
E.3.3 Fish	X\
E.3.3.1 The main stem of Ely Brook	
E.3.3.2 Schoolhouse Brook	
E.3.3.3 The EBOR	
E.3.4 AMPHIBIANS	
E.3.5 INSECTIVOROUS BIRDS	
E.3.5.1 Schoolhouse Brook	
E.3.6 INSECTIVOROUS MAMMALS	ا۷۸
E.3.6.1 Schoolhouse Brook	
E.3.6.2 The EBOR	
E.3.7 PISCIVOROUS BIRDS AND MAMMALS	vı
E.3.7.1 Schoolhouse Brook	
E.3.7.2 The EBOR	
SECTION 1.0: GENERAL INTRODUCTION	1-1
1.1 SCOPE AND OBJECTIVES	
1.2 REGULATORY FRAMEWORK	
1.3 REPORT ORGANIZATION	1-1
SECTION 2.0: SITE HISTORY AND DESCRIPTION	2-1
2.1 SITE DEFINITION	2.1
2.2 SITE HISTORY	
SECTION 3.0: DATABASE DEVELOPMENT AND DATA PROCESSING	3-1
3.1 DATA SOURCES	3-1
3.2 DATA QUALITY	
3.2.1 Evaluation of qualified and coded data	3-3
3.3 COMPILING DATA SETS FOR USE IN THE AQUATIC PORTION OF THE BERA	
3.3.1 Hardness-dependent metals	
3.3.2 Data summarization method	3-4
SECTION 4.0: BASELINE PROBLEM FORMULATION	4- 1
4.1 SCOPE OF THE BASELINE PROBLEM FORMULATION	4-1
4.2 RESULTS OF THE SLERA	
4.3 NATURE AND EXTENT OF CONTAMINATION IN AQUATIC HABITATS	
4.4 REFINEMENT AND SELECTION OF THE FINAL COPECS	
4.4.1 Introduction	
4.4.2 Sediment COPECs for benthic invertebrates	
4.4.3 Pore water COPECs for benthic invertebrates	
4.4.4 Surface water COPECs for aquatic receptors	
4.4.5 Fish tissue COPECs	4-6

4.4.6 Surface water COPECs for use in wildlife food chain modeling	
4.4.7 Sediment COPECs for use in wildlife food chain modeling	
4.5 AQUATIC COMMUNITIES	
4.5.1 Aquatic habitat description	
4.5.2 Aquatic animals	4-7 17
4.7 SITE CONCEPTUAL MODEL	
4.7.1 Contaminant fate and transport	
4.7.1.1 Sources of contamination	
4.7.1.2 Release and transport mechanisms4-	
4.7.1.3 Contact point and exposure media4-	
4.7.1.4 Routes of entry4	
4.7.2 Potential receptors and ecotoxicity4	
4.7.3 Ecosystems potentially at risk4	
4.7.4 Exposure pathways	
4.7.5 Site Conceptual Model44.8 ASSESSMENT ENDPOINTS, RISK QUESTIONS, MEASUREMENT ENDPOINTS, AND WEIGHT	
EVIDENCE4	
4.8.1 Introduction	
4.8.2 Selecting representative assessment endpoint species or communities4-	
4.8.2.1 Non-wildlife receptors4-	
4.8.2.2 Wildlife receptors4-	
4.8.3 Endpoint selection4-	-16
4.8.3.1 Aquatic assessment endpoints and risk questions4	
4.8.3.2 Aquatic measurement endpoints4-	
4.8.4 Weight of evidence4-	-20
SECTION 5.0: EXPOSURE ANALYSIS	5-1
5.1 INTRODUCTION	5-1
5.2 CALCULATING THE EPCS FOR DIRECT EXPOSURES BY AQUATIC RECEPTORS	
5.2.1 Sediment EPCs	
5.2.2 Sediment pore water EPCs	
5.2.3 Surface water EPCs	
5.3 CALCULATING THE FISH TISSUE EPCS FOR COMPARISON TO CBRS	
5.4 CALCULATING THE EPCS FOR USE IN WILDLIFE EXPOSURE MODELING	
5.4.1 Surface water EPCs	
5.4.2 Fish tissue EPCs	
5.5 WILDLIFE FOOD CHAIN MODELING TO CALCULATE THE EDDS	
5.5.1 General food web structure (based on URS, 2006)	
5.5.2 Exposure parameters	
5.5.3 Dry weight (dw) to wet weight (ww) conversion	
5.5.4 Bioavailability adjustment factors	
5.5.5 Wildlife receptor EDDs	5-5
SECTION 6.0: EFFECTS ANALYSIS	6-1
6.1 INTRODUCTION	
6.2.1 Sediment benchmarks	
6.2.2 Surface Water Benchmarks	
6.2.3 Critical Body Residues	
6.2.4 Toxicity reference values for wildlife receptors	
6.3 TOXICITY TESTING	6-6
6.3.1 Bulk sediment toxicity testing	
6.3.2 Sediment pore water toxicity testing	

6.3.3 Surface water toxicity testing	6-9
6.3.3.1 Laboratory component	
6.3.3.2 Field component	
6.4 FIELD COMMUNITY SURVEYS	
6.4.1 Benthic community surveys	
6.4.1.1 Main stem of Ely Brook	
6.4.1.2 Schoolhouse Brook	
6.4.1.3 The EBOR	
6.4.2 Fish community surveys	
6.4.2.1 Schoolhouse Brook	
6.4.2.2 The EBOR	
SECTION 7.0: RISK CHARACTERIZATION	7-1
7.1 INTRODUCTION	7-1
7.1.1 Hazard quotient	
7.1.1.1 Calculating HQs	
7.1.1.2 Interpreting the potential for ecological risk using the HQ	
7.1.1.3 Calculating incremental risk for HQs	
7.1.2 Statistical testing	
7.1.3 Community health criteria	7-4
7.2 ASSESSMENT ENDPOINT 1: BENTHIC INVERTEBRATES	
7.2.1 Measurement endpoint 1.A:	
7.2.2 Measurement endpoint 1.B:	
7.2.3 Measurement endpoint 1.C	
7.2.4 Measurement endpoint 1.D	
7.2.5 Measurement endpoint 1.E	
7.2.6 Measurement endpoint 1.F	
7.3 ASSESSMENT ENDPOINT 2: WATER COLUMN INVERTEBRATES	7-11 7 ₋ 11
7.3.1 Measurement endpoint 2.A	
7.3.2 Measurement endpoint 2.B	
7.3.3 WOE integration for assessment endpoint 2	
7.4 ASSESSMENT ENDPOINT 3: FISH	7-13
7.4.1 Measurement endpoint 3.A	
7.4.2 Measurement endpoint 3.B	
7.4.3 Measurement endpoint 3.C	
7.4.4 Measurement endpoint 3.D	
7.4.5 WOE integration for assessment endpoint 3	7-17
7.5 ASSESSMENT ENDPOINT 4: AMPHIBIANS	7-17
7.5.1 Measurement endpoint 4.A	
7.5.2 Measurement endpoint 4.B	
7.5.3 Measurement endpoint 4.C	7-18
7.5.4 WOE integration for assessment endpoint 4	
7.6 ASSESSMENT ENDPOINT 5: INSECTIVOSOUS BIRDS	
7.6.1 Measurement endpoint 5.A7.6.2 WOE integration for assessment endpoint 5	7-19
7.6.2 WOE integration for assessment endpoint 5	7-20
7.7 ASSESSMENT ENDPOINT 6: INSECTIVOROUS MAMMALS	
7.7.1 Measurement endpoint 6.A	1-20
7.7.2 WOE integration for assessment endpoint 6	
7.8 ASSESSMENT ENDPOINT 7: PISCIVOROUS BIRDS	
7.8.1 Measurement endpoint 7.A7.8.2 WOE integration for assessment endpoint 7	۱۲-۲ ۲۰۰
7.9 ASSESSMENT ENDPOINT 8 : PISCIVOROUS MAMMALS	7-1
7.9.1 Measurement endpoint 8.A	7-23

7.10 UNCERTAINTY ANALYSIS	7-23
7.10.1 Introduction	
7.10.2 Major uncertainties associated with assessing risk to benthic invertebrates	7-23
7.10.2.1 Measurement endpoint 1.A:	7-23
7.10.2.2 Measurement endpoint 1.B:	
7.10.2.3 Measurement endpoint 1.C:	7-24
7.10.2.4 Measurement endpoints 1.D:	7-24
7.10.2.5 Measurement endpoint 1.E:	
7.10.2.6 Measurement endpoint 1.F:	
7.10.3 Major uncertainties associated with assessing risk to water column invertebrates in the po	nds7
25	
7.10.3.1 Measurement endpoint 2.A:	7-25
7.10.4 Major uncertainties associated with assessing risk to fish	7-25
7.10.4.1 Measurement endpoint 3.A:	
7.10.4.2 Measurement endpoint 3.B:	
7.10.4.3 Measurement endpoint 3.C:	
7.10.4.4 Measurement endpoint 3.D:	
7.10.5 Major uncertainties associated with assessing risk to amphibians	
7.10.5.1 Measurement endpoint 4.A:	
7.10.5.2 Measurement endpoint 4.B:	
7.10.5.3 Measurement endpoint 4.C:	
7.10.6 Major differ and east east of a second and maintain assessing risk to piscivorous birds and maintain	
7.10.7 Major uncertainties associated with assessing risk to insectivorous birds and mammals	
7.10.7 Major differ tailines associated with assessing risk to insectivorous birds and marifinals 7.10.7.1 Measurement endpoint 7.A and 8.A:	
SECTION 8.0: SUMMARY AND CONCLUSIONS	
8.1 INTRODUCTION	8-1
8.2 GENERAL CONCLUSIONS OF THE BERA	
8.2.1 Benthic invertebrate community	
8.2.1.1 The ponds on the east branch of Ely Brook	8-2
8.2.1.1 The ponds on the east branch of Ely Brook	8-2 8-2
8.2.1.1 The ponds on the east branch of Ely Brook	8-2 8-2 8-2
8.2.1.1 The ponds on the east branch of Ely Brook	8-2 8-2 8-2
8.2.1.1 The ponds on the east branch of Ely Brook	8-2 8-2 8-2 8-3
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish	8-2 8-2 8-2 8-3
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook	8-2 8-2 8-2 8-3 8-3
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook	8-2 8-2 8-2 8-3 8-3 8-3 8-3
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR	8-2 8-2 8-2 8-3 8-3 8-3 8-3 8-3
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians	8-2 8-2 8-2 8-3 8-3 8-3 8-3 8-4 8-4
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds	8-2 8-2 8-2 8-3 8-3 8-3 8-3 8-4 8-4 8-4
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds 8.2.5.1 Schoolhouse Brook	8-2 8-2 8-2 8-3 8-3 8-3 8-4 8-4 8-4 8-5
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds 8.2.5.1 Schoolhouse Brook 8.2.5.1 The EBOR	8-2 8-2 8-2 8-3 8-3 8-3 8-3 8-4 8-4 8-5 8-5
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds 8.2.5.1 Schoolhouse Brook 8.2.5.1 Schoolhouse Brook 8.2.5.2 The EBOR 8.2.6 Insectivorous mammals	8-2 8-2 8-3 8-3 8-3 8-3 8-4 8-4 8-5 8-5
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds 8.2.5.1 Schoolhouse Brook 8.2.5.1 The EBOR	8-2 8-2 8-2 8-3 8-3 8-3 8-4 8-4 8-5 8-5 8-5
8.2.1.1 The ponds on the east branch of Ely Brook. 8.2.1.2 The main stem of Ely Brook. 8.2.1.3 Schoolhouse Brook. 8.2.1.4 The EBOR. 8.2.2 Water column invertebrate community. 8.2.3 Fish	8-2 8-2 8-2 8-3 8-3 8-3 8-4 8-5 8-5 8-5 8-5
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds 8.2.5.1 Schoolhouse Brook 8.2.5.2 The EBOR 8.2.6 Insectivorous mammals 8.2.6.1 Schoolhouse Brook	8-2 8-2 8-3 8-3 8-3 8-3 8-4 8-5 8-5 8-5 8-5 8-5
8.2.1.1 The ponds on the east branch of Ely Brook 8.2.1.2 The main stem of Ely Brook 8.2.1.3 Schoolhouse Brook 8.2.1.4 The EBOR 8.2.2 Water column invertebrate community 8.2.3 Fish 8.2.3.1 The main stem of Ely Brook 8.2.3.2 Schoolhouse Brook 8.2.3.3 The EBOR 8.2.4 Amphibians 8.2.5 Insectivorous birds 8.2.5.1 Schoolhouse Brook 8.2.5.2 The EBOR 8.2.6 Insectivorous mammals 8.2.6.1 Schoolhouse Brook 8.2.6.2 The EBOR	8-2 8-2 8-3 8-3 8-3 8-3 8-4 8-5 8-5 8-5 8-5 8-6

FIGURES

Figure 4.1 Major Ely Mine Features

Figure 4.2 Location of the five ponds on the east branch of Ely Brook

Figure 4.3 Schoolhouse Brook and the East Branch of the Ompompanoosuc River Figure 4.4 Site Conceptual Model for aquatic habitats and receptors at Ely Copper Mine

ATTACHMENTS

EXECUTIVE SUMMARY

Attachment E.1	Weight-of-evidence integration for benthic invertebrates
Attachment E.2	Weight-of-evidence integration for water column invertebrates
Attachment E.3	Weight-of-evidence integration for fish
Attachment E.4	Weight-of-evidence integration for amphibians
Attachment E.5	Weight-of-evidence integration for insectivorous birds
Attachment E.6	Weight-of-evidence integration for insectivorous mammals
Attachment E.7	Weight-of-evidence integration for piscivorous birds
Attachment E.8	Weight-of-evidence integration for piscivorous mammals
Attachment E.9	Summary of the evidence for ecological risk at pond 2 on the east branch of Ely Brook
	Summary of the evidence for ecological risk at pond 3 on the east branch of Ely Brook
	Summary of the evidence for ecological risk at pond 4 on the east branch of Ely Brook
	Summary of the evidence for ecological risk at pond 5 on the east branch of Ely Brook
	Summary of the evidence for ecological risk in the main stem of Ely Brook
	Summary of the evidence for ecological risk in Schoolhouse Brook
Attachment E.15	Summary of the evidence for ecological risk in the east branch of the Ompompanoosuc River (EBOR)

SECTION 4.0	
Attachment 4.1	Selection of Sediment COPECs for Benthic Invertebrates in Pond 2
Attachment 4.2	Selection of Sediment COPECs for Benthic Invertebrates in Pond 3
Attachment 4.3	Selection of Sediment COPECs for Benthic Invertebrates in Pond 4
Attachment 4.4	Selection of Sediment COPECs for Benthic Invertebrates in Pond 5
Attachment 4.5	Selection of Sediment COPECs for Benthic Invertebrates in the Main Stem of Ely Brook
Attachment 4.6	Selection of Sediment COPECs for Benthic Invertebrates in School House Brook
Attachment 4.7	Selection of Sediment COPECs for Benthic Invertebrates in the EBOR
Attachment 4.8	Summary of Sediment COPECs for Benthic Invertebrates
Attachment 4.9	Selection of Pore Water COPECs for the Main Stem of Ely Book
Attachment 4.10	Selection of Pore Water COPECs for School House Brook
Attachment 4.11	Selection of Pore Water COPECs for the EBOR
Attachment 4.12	Summary of Pore Water COPECs
Attachment 4.13	Selection of Surface Water COPECs for Pond 2
Attachment 4.14	Selection of Surface Water COPECs for Pond 3
Attachment 4.15	Selection of Surface Water COPECs for Pond 4
Attachment 4.16	Selection of Surface Water COPECs for Pond 5
Attachment 4.17	Selection Surface Water COPECs for Ely Book
Attachment 4.18	Selection of Surface Water COPECs for School House Brook
Attachment 4 19	Selection of Surface Water COPECs for the FBOR

Attachment 4.19 Selection of Surface Water COPECs for the EBOR

Attachment 4.20 Summary of Surface Water COPECs for Aquatic Receptors Attachment 4.21 Selection of Brook Trout COPECs for School House Brook

Attachment 4.22 Selection of Blacknose Dace COPECs for School House Brook

Attachment 4.23 Selection of Brook Trout COPECs for the EBOR

Attachment 4.24 Selection of Blacknose Dace COPECs for the EBOR Summary of Brook Trout and Blacknose Dace COPECs Attachment 4.25

Attachment 4.26 Selection of Fish (Brook Trout and Blacknose Dace Combined) COPECs for School House Brook

Attachment 4.27 Selection of Fish (Brook Trout and Blacknose Dace Combined) COPECs for the EBOR Attachment 4.28 Summary of Fish (Brook Trout and Blacknose Dace Combined) COPECs Attachment 4.29 Selection of Surface Water COPECs for Wildlife at School House Brook Attachment 4.30 Selection of Surface Water COPECs for Wildlife at the EBOR Attachment 4.31 Summary of Surface Water COPECs for Wildlife Receptors **SECTION 5.0** Exposure Point Concentrations for Sediment COPECs in Pond 2 Attachment 5.1 Attachment 5.2 Exposure Point Concentrations for Sediment COPECs in Pond 3 Exposure Point Concentrations Sediment COPECs in Pond 4 Attachment 5.3 Attachment 5.4 Exposure Point Concentrations for Sediment COPECs in Pond 5 Attachment 5.5 Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Pond (Pond 1) Exposure Point Concentrations for Sediment COPECs in the Main Stem of Ely Brook Attachment 5.6 Attachment 5.7 Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Section of the Main Stem of Ely Brook Exposure Point Concentrations for Sediment COPECs in School House Brook Attachment 5.8 Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Attachment 5.9 Section of School House Brook Exposure Point Concentrations for Sediment COPECs in the EBOR Attachment 5.10 Attachment 5.11 Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Section of the EBOR Attachment 5.12 Exposure Point Concentrations for Pore Water COPECs in the Main Stem of Ely Brook Attachment 5.13 Exposure Point Concentrations for Pore Water COPECs in the Upstream Reference Section of the Main Stem of Ely Brook Attachment 5.14 Exposure Point Concentrations for Pore Water COPECs in School House Brook Attachment 5.15 Exposure Point Concentrations for Pore Water COPECs in the Upstream Reference Section of School House Brook Attachment 5.16 Exposure Point Concentrations for Pore Water COPECs in the EBOR Attachment 5.17 Exposure Point Concentrations for Pore Water COPECs in the Upstream Reference Section of the EBOR Attachment 5.18 Exposure Point Concentrations for Surface Water COPECs in Pond 2 Attachment 5.19 Exposure Point Concentrations for Surface Water COPECs in Pond 3 Attachment 5.20 Exposure Point Concentrations for Surface Water COPECs in Pond 4 Attachment 5.21 Exposure Point Concentrations for Surface Water COPECs in Pond 5 Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Attachment 5.22 Pond (Pond 1) Attachment 5.23 Exposure Point Concentrations for Surface Water COPECs in Ely Brook (Aquatic Receptors) Attachment 5.24 Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Portion of the Main Stem of Ely Brook (Aquatic Receptors) Attachment 5.25 Exposure Point Concentrations for Surface Water COPECs in School House Brook (Aquatic Receptors) Attachment 5.26 Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Section of School House Brook (Aquatic Receptors) Attachment 5.27 Exposure Point Concentrations for Surface Water COPECs in the EBOR (Aquatic Receptors) Attachment 5.28 Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Section of the EBOR (Aquatic Receptors) Attachment 5.29 Exposure Point Concentrations for Brook Trout Tissue Residues from School House Brook Attachment 5.30 Exposure Point Concentrations for Blacknose Dace Tissue Residues from School House Brook Attachment 5.31 Exposure Point Concentrations for Brook Trout Tissue Residues from the Upstream

Reference Section of School House Brook

Attachment 5.32	Exposure Point Concentrations for Blacknose Dace Tissue Residues from the Upstream Reference Section of School House Brook
Attachment 5 33	Exposure Point Concentrations for Brook Trout Tissue Residues from EBOR
	Exposure Point Concentrations for Blacknose Dace Tissue Residues from EBOR
	Exposure Point Concentrations for Blacknose Dace Tissue Residues from the
/ ((laoriinioni o.oo	Upstream Reference Section of the EBOR
Attachment 5 36	Exposure Point Concentrations for Surface Water COPECs in School House Brook
/ ((laoriinioni o.oo	(Wildlife Receptors)
Attachment 5.37	Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference
/ ((laoriinoni o.or	Section of School House Brook (Wildlife Receptors)
Attachment 5.38	Exposure Point Concentrations for Surface Water COPECs in the EBOR (Wildlife
Attachment 5.50	Receptors)
Attachment 5.39	Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference
Attachment 5.55	Section of the EBOR (Wildlife Receptors)
Attachment 5.40	Exposure Point Concentrations for Combined Fish Tissue Residues from School House
Attachment 3.40	Brook
Attachment 5.41	Exposure Point Concentrations for Combined Fish Tissue Residues from the
Attachment 3.41	Upstream Reference Section of School House Brook
Attachment 5.42	Exposure Point Concentrations for Combined Fish Tissue Residues for the EBOR
Attachment 5.43	Exposure Point Concentrations for Combined Fish Tissue Residues from the
Allacillient 3.43	Upstream Reference Section of the EBOR
Attachment 5.44	Aquatic and emergent invertebrate BSAFs for use in food chain modeling
Attachment 5.45	Summary of exposure parameters for wildlife receptors of concern evaluated in the
Allaciment 5.45	aquatic portion of the BERA
Attachment 5.46	Water content in aquatic and terrestrial invertebrates
Attachment 5.47	Bioavailability adjustment factors (BAVs) for carnivores
Attachment 5.48	Estimated Daily Doses for Tree Swallows at School House Brook
Attachment 5.49	Estimated Daily Doses for Tree Swallows at School Flouse Brook Estimated Daily Doses for Tree Swallows in the Upstream Reference Section of
Allaciment 3.43	School House Brook
Attachment 5.50	Estimated Daily Doses for Tree Swallows at the EBOR
Attachment 5.51	Estimated Daily Doses for Tree Swallows at the Upstream Reference Section of the
Allacillient 3.31	EBOR
Attachment 5.52	Estimated Daily Doses for the Eastern Small-footed Bats at School House Brook
Attachment 5.53	Estimated Daily Doses for the Eastern Small-footed Bats at the Reference Section of
Attachment 5.55	School House Brook
Attachment 5.54	Estimated Daily Doses for the Eastern Small-footed Bats at the EBOR
Attachinient 3.34	Estimated Daily Doses for the Eastern Small-Tooled Dats at the EDOT
Attachment 5.55	Estimated Daily Doses for the Eastern Small-footed Bats at Reference Section of the
, maoninoni oloo	EBOR
Attachment 5.56	Estimated Daily Dose for the Belted Kingfishers at School House Brook
Attachment 5.57	Estimated Daily Doses for Belted Kingfishers at the Reference Section of School
, addinion ordi	House Brook
Attachment 5.58	Estimated Daily Doses for Belted Kingfishers at the EBOR
Attachment 5.59	Estimated Daily Dose for Belted Kingfishers at the Reference Section of the EBOR
Attachment 5.60	Estimated Daily Doses for Mink at School House Brook
Attachment 5.61	Estimated Daily Doses for Mink at the Reference Section of School House Brook
Attachment 5.62	Estimated Daily Doses for Mink at the EBOR
Attachment 5.63	Estimated Daily Dose for Mink at the Upstream Reference Section of the EBOR
SECTION 6.0	
	Median to Severe Effect Sediment Benchmarks
Attachment 6.1 Attachment 6.2	Acute Benchmarks for Surface Water
Allacilliell 0.2	Acute Delicillians for Sunace Water
SECTION 7.0	
Attachment 7.1	Hazard Quotients for Sediment COPECs in Pond 2

Attachment 7.2	Hazard Quotients for Sediment COPECs in Reference Pond (Pond 1)
Attachment 7.3	Incremental Risk for Sediments in Pond 2
Attachment 7.4	Hazard Quotients for Sediment COPECs in Pond 3
Attachment 7.5	Incremental Risk for Sediments in Pond 3
Attachment 7.6	Hazard Quotients for Sediment COPECs in Pond 4
Attachment 7.7	Incremental Risk for Sediments in Pond 4
Attachment 7.8	Hazard Quotients for Sediment COPECs in Pond 5
Attachment 7.9	Incremental Risk for Sediments in Pond 5
Attachment 7.10	Hazard Quotients for Sediment COPECs in Ely Brook
Attachment 7.11	Hazard Quotients for Sediment COPECs in the Upstream Reference Section of Ely Brook
Attachment 7.12	Incremental Risk for Sediments in Ely Brook
Attachment 7.13	Hazard Quotients for Sediment COPECs in School House Brook
Attachment 7.14	Hazard Quotients for Sediment COPECs in the Upstream Reference Section of
	School House Brook
Attachment 7.15	Incremental Risk for Sediments in School House Brook
Attachment 7.16	Hazard Quotients for Sediment COPECs in the EBOR
Attachment 7.17	Hazard Quotients for Sediment COPECs in the Upstream Reference Section of the EBOR
Attachment 7.18	Incremental Risk for Sediments in the EBOR
Attachment 7.19	Hazard Quotients for Pore Water COPECs in Main Stem of Ely Brook
Attachment 7.20	Hazard Quotients for Pore Water COPECs in the Upstream Reference Section of the
	Main Stem of Ely Brook
Attachment 7.21	Incremental Risk for the Pore Water in the Main Stem of Ely Brook
Attachment 7.22	Hazard Quotients for Pore Water COPECs in School House Brook
Attachment 7.23	Hazard Quotients for Pore Water COPECs in the Upstream Reference Section of
	School House Brook
Attachment 7.24	Incremental Risk for the Pore Water in School House Brook
Attachment 7.25	Hazard Quotients for Pore Water COPECs in the EBOR
Attachment 7.26	Hazard Quotients for Pore Water in the Upstream Reference Section of the EBOR
Attachment 7.27	Incremental Risk for Pore Water in the EBOR
Attachment 7.28	Calculation of AVS-SEM
Attachment 7.29	Weight-of-Evidence Integration for Benthic Invertebrates
Attachment 7.30	Hazard Quotients for Surface Water COPECs in Pond 2
Attachment 7.31	Hazard Quotients for Surface Water COPECs in Reference Pond (Pond 1)
Attachment 7.32	Incremental Risk for Surface Water in Pond 2
Attachment 7.33	Hazard Quotients for Surface Water COPECs in Pond 3
Attachment 7.34	Incremental Risk for Surface Water from Pond 3
Attachment 7.35	Hazard Quotients for Surface Water COPECs in Pond 4
Attachment 7.36	Incremental Risk for Surface Water in Pond 4
Attachment 7.37	Hazard Quotients for Surface Water COPECs in Pond 5
Attachment 7.38	Incremental Risk for Surface Water from Pond 5
Attachment 7.39	Weight-of-Evidence Integration of Water Column Invertebrates
Attachment 7.40	Hazard Quotients for Surface Water COPECs in Main Stem of Ely Brook
Attachment 7.41	Hazard Quotients for Surface Water COPECs in the Upstream Reference Section of the Main Stem of Ely Brook
Attachment 7.42	Incremental Risk for Surface Water in the Main Stem of Ely Brook
Attachment 7.43	Hazard Quotients for Surface Water COPECs in School House Brook
Attachment 7.44	Hazard Quotients for Surface Water COPECs in Upstream Reference Section of School House Brook
Attachment 7.45	Incremental Risk for Surface Water in School House Brook
Attachment 7.46	Hazard Quotients for Surface Water COPECs in the EBOR
Attachment 7.47	Hazard Quotients for Surface Water Column COPECs in the Upstream Reference Section of the EBOR
Attachment 7.48	Incremental Risk for Surface Water in the EBOR

Attachment 7.49	Hazard Quotients for Brook Trout COPECs in School House Brook
Attachment 7.50	Hazard Quotients for Brook Trout in the Upstream Reference Section of School
	House Brook
Attachment 7.51	Incremental Risk for Brook Trout in School House Brook
Attachment 7.52	Hazard Quotients for Blacknose Dace COPECs in School House Brook
Attachment 7.54	Incremental Risk for Blacknose Dace in School House Brook
Attachment 7.55	Hazard Quotients for Brook Trout COPECs in the EBOR
Attachment 7.56	Incremental Risk for Brook Trout in the EBOR
Attachment 7.57	Hazard Quotients for Blacknose Dace COPECs in the EBOR
Attachment 7.58	Hazard Quotients for Blacknose Dace COPECs in the Reference Section of the
	EBOR
Attachment 7.59	Incremental Risk for Blacknose Dace in the EBOR
Attachment 7.60	Weight-of-Evidence Integration of Fish
Attachment 7.61	Weight-of-Evidence Integration for Amphibians
Attachment 7.62	Hazard Quotients for Tree Swallows at School House Brook
Attachment 7.63	Hazard Quotients for Tree Swallow COPECs in the Upstream Reference Section of
	School House Brook
Attachment 7.64	Incremental Risk for Tree Swallows at School House Brook
Attachment 7.65	Hazard Quotients for Tree Swallow COPECs at the EBOR
Attachment 7.66	Hazard Quotients for Tree Swallow COPECs at the Upstream Reference Section of
	the EBOR
Attachment 7.67	Incremental Risk for the Tree Swallows at the EBOR
Attachment 7.68	Weight-of-Evidence Integration for Insectivorous Birds
Attachment 7.69	Hazard Quotients for Eastern Small-footed Bat COPECs at School House Brook
Attachment 7.70	Hazard Quotients for Eastern Small-footed Bat COPECs at the Reference Section of
	School House Brook
Attachment 7.71	Incremental Risk for the Eastern Small-footed Bat at School House Brook
Attachment 7.72	Hazard Quotients for the Eastern Small-footed Bat COPECs at the EBOR
Attachment 7.73	Hazard Quotients for the Eastern Small-footed Bat COPECs at the Reference Section
	of the EBOR
Attachment 7.74	Incremental Risk for the Eastern small-footed bats at the EBOR
Attachment 7.75	Weight-of-Evidence Integration of Insectivorous Mammals
Attachment 7.76	Hazard Quotients for Belted Kingfisher COPECs at School House Brook
Attachment 7.77	Hazard Quotients for Belted Kingfisher COPECs at the Reference Section of School
A (House Brook
Attachment 7.78	Incremental Risk for Belted Kingfishers at School House Brook
Attachment 7.79	Hazard Quotients for the Belted Kingfisher COPECs at the EBOR
Attachment 7.80	Hazard Quotients for the Belted Kingfisher COPECs at the Reference Section of the
Attachment 7.81	EBOR
Attachment 7.82	Incremental Risk for the Belted Kingfishers at the EBOR Weight-of-Evidence Integration for Piscivorous Birds
Attachment 7.83	Hazard Quotients for Mink COPECs at School House Brook
Attachment 7.84	Hazard Quotients for Mink COPECs at School House Brook Hazard Quotients for Mink COPECs in the Reference Section of School House Brook
Attachment 7.85	Incremental Risk for Mink at School House Brook
Attachment 7.86	Hazard Quotients for Mink COPECs at the EBOR
Attachment 7.87	Hazard Quotients for Mink COPECs at the EBOR Hazard Quotients for Mink COPECs at the Reference Section of the EBOR
Attachment 7.88	Incremental Risk for the Mink at the EBOR
Attachment 7.89	Weight-of-Evidence Integration for Piscivorous Mammals
/ Macimient / .03	Traight of Evidence integration for Fisorerous Marilinais
SECTION 8.0	

Attachment 8.1 Attachment 8.2	Summary of the evidence for ecological risk at pond 2 on the east branch of Ely Brook
	Summary of the evidence for ecological risk at pond 3 on the east branch of Ely Brook
Attachment 8.3	Summary of the evidence for ecological risk at pond 4 on the east branch of Ely Brook
Attachment 8.4	Summary of the evidence for ecological risk at pond 5 on the east branch of Ely Brook
Attachment 8.5	Summary of the evidence for ecological risk in the main stem of Elv Brook

Attachment 8.6 Summary of the evidence for ecological risk in Schoolhouse Brook
Summary of the evidence for ecological risk in the east branch of the
Ompompanoosuc River (EBOR)

APPENDICES

Appendix 1: Analytical data for sediment samples by exposure unit.

Appendix 2: Analytical data for pore water samples by exposure unit.

Appendix 3: Analytical data for surface water samples by exposure unit.

Appendix 4: Analytical data for whole fish by exposure unit.

Appendix 5: Normalizing dissolved metal concentrations to surface water hardness.

Appendix 6: Draft screening-level ecological risk assessment, Ely Copper Mine Superfund Site,

Vershire, VT. January 2008.

Appendix 7: Developing critical body residues for salmonids.

Appendix 8: Bulk sediment toxicity testing using the amphipod, *Hyalella azteca* and the midge fly

larva, Chironomus tentans.

Appendix 9: Sediment pore water toxicity testing using the amphipod, Hyalella azteca and the

midge fly larva, Chironomus tentans.

Appendix 10: Surface water toxicity testing using fathead minnow (*Pimephales promelas*)

neonates.

Appendix 11: In-situ surface water toxicity testing using wood frog (Rana sylvatica) eggs.

Appendix 12: In-situ surface water toxicity testing using wood frog (Rana sylvatica) tadpoles.

Appendix 13: Benthic invertebrate and fish community health in impacted streams at the site.

Appendix 14: ProUCL outputs

EXECUTIVE SUMMARY

E.1 INTRODUCTION

A Baseline Ecological Risk Assessment (BERA) was performed on the aquatic habitats potentially affected by the Ely Copper Mine Superfund Site, located in Vershire, VT. The Site was used in the 19th and early 20th century for ore mining, ore "roasting", copper smelting, and disposal of waste rock and tailings. Past site investigations showed severe impacts associated with Acid Mine Drainage (AMD) to terrestrial habitats at the Site and to aquatic habitats on and off the Site.

The major aquatic habitats at the Site consisted of several small ponds (ponds 2 to 5) located on the east branch of Ely Brook (note: pond 1, the furthest upstream - and largest - of the five ponds, was used as a reference location), and the main stem of Ely Brook itself. Several other Ely Brook tributaries had surface water high in acidity and metals but were too small and/or ephemeral to be considered viable aquatic habitats. The major off-Site aquatic habitats consisted of Schoolhouse Brook downstream of the confluence with the main stem of Ely Brook, and the east branch of the Ompompanoosuc River (EBOR) downstream of the confluence with Schoolhouse Brook.

E.2 RISK ANALYSIS

A Screening-Level Ecological Risk Assessment (SLERA) was performed in 2007 using available surface water and sediment analytical data. It identified many inorganic Contaminants of Potential Ecological Concern (COPECs) in all of the aquatic habitats at and downgradient of the Site. This finding prompted the Environmental Protection Agency (EPA) to proceed with a BERA to further determine the degree and extend of ecological risk in these habitats.

The Conceptual Site Model (CSM) developed for the SLERA was expanded to identify the likely exposure pathways and receptors in the aquatic habitats on- and off-Site. The receptor groups of concern were benthic invertebrates, water column invertebrates, fish, amphibians, insectivorous birds and mammals, and piscivorous birds and mammals.

Not all receptor groups were assessed for ecological risk in all habitats. For example, fish were absent from the ponds. The ponds and the main stem of Ely Brook were also considered to provide too small a habitat for insectivorous birds and mammals. Exposure routes included direct exposures to COPECs in bulk sediment, pore water, and/or surface water by aquatic receptors (invertebrates, fish, and amphibians), and ingestion of contaminated surface water and winged aquatic insects and fish by insectivorous and piscivorous wildlife receptors.

The CSM formed a basis to select assessment endpoints and measurement endpoints. The assessment endpoints were explicit expressions of key ecological resources to be protected from harm associated with releases of AMD to the ponds and the on- and off-Site waterways. The assessment endpoints used in the BERA were as follows:

- A stable and healthy benthic invertebrate community: Are the COPEC levels in sediment sufficiently high to cause biologically-significant changes or impair the function of the benthic invertebrate community in the four ponds and the three streams at and down-gradient from the Site?
- A stable and healthy water column invertebrate community: Are the dissolved COPEC levels
 in surface water sufficiently high to cause biologically-significant changes or impair the function of
 the water column invertebrate community in the four ponds at the Site?
- A stable and healthy fish community: Are the dissolved COPEC levels in surface water sufficiently high to cause biologically-significant changes or impair the function of the fish

community in the three streams at and down-gradient from the Site?

- Stable and healthy amphibian populations: Are the dissolved COPEC levels in surface water sufficiently high to cause biologically-significant changes or impair the function of the amphibian populations in the four ponds at the Site?
- Stable and healthy insectivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous bird populations foraging in the vicinity of Schoolhouse Brook and the EBOR?
- Stable and healthy insectivorous mammal populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous mammal populations foraging in the vicinity of Schoolhouse Brook and the EBOR?
- Stable and healthy piscivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to impair piscivorous bird populations foraging in Schoolhouse Brook and the EBOR?
- Stable and healthy piscivorous mammal populations: Are the COPEC levels in surface water, sediment, and biota sufficiently high to impair piscivorous mammal populations foraging in Schoolhouse Brook and the EBOR?

It was not possible to directly quantify the risk to these assessment endpoints. Instead, several measurement endpoints were selected for this purpose. These endpoints were measurable ecological characteristics, quantified through laboratory or field experimentation, which could be related back to the valued ecological resources chosen as the assessment endpoints. The measurement endpoints represented the same exposure pathways and mechanisms of toxicity as the assessment endpoints to which they were related.

The following seven types of measurement endpoints were used in the BERA:

- Compare COPEC levels in sediment, pore water, and surface water samples to published sediment or surface water benchmarks.
- Assess the bioavailability of divalent metals in sediment samples by measuring the Acid Volatile Sulfides (AVS) and Simultaneously Extracted Metals (SEM).
- Perform toxicity tests in the laboratory by exposing sensitive life stages of aquatic invertebrates and fish to sediment, pore water, and surface water samples from the waterways.
- Perform toxicity tests in the ponds by exposing wood frog eggs and tadpoles kept in floating cages.
- Compare the COPEC levels in whole fish collected from the waterways to literature-derived Critical Body Residues (CBRs).
- Quantify the structure and function of the benthic invertebrate community and fish community in the waterways.
- Use food chain modeling to calculate an Estimated Daily Dose (EDD) to insectivorous and
 piscivorous wildlife receptors from exposure to surface water and aquatic biota (winged aquatic
 insects and fish); compare these EDDs to Toxicity Reference Values (TRVs) from the literature.

The various measurement endpoints used in this BERA varied in their ability to quantify the risks to their related assessment endpoints. Some of the measurement endpoints were quite generic (e.g., sediment or surface water benchmarks), whereas others were highly quantitative and reflected long-term, site-specific impacts at a higher level of ecological organization (e.g., community surveys). To support risk characterization, each measurement endpoint was provided with a descriptive Weight-of-Evidence (WOE) score which ran from "low" to "high". The final risk integration step included this score to determine the potential for and significance of the potential for risk to the various assessment endpoints.

Specific Exposure Units (EUs) were defined for each assessment endpoint. The EUs consisted of the ponds 2 to 5 on the east branch of Ely Mine, the main stem of Ely Brook downstream from where AMD reaches the brook, Schoolhouse brook from the confluence with the main stem of Ely Brook to its confluence with the EBOR, and the EBOR below the confluence with Schoolhouse Brook. These EUs were needed to determine how to summarize the analytical data into specific data sets for use in the risk calculations.

Each EU had an associated "reference" EU which was not affected by AMD but resembled the impacted EUs in all other respects. For example, the reference EU for Schoolhouse Brook was a stretch of this brook located just upstream of where the main stem of Ely Brook enters Schoolhouse Brook. The reference EUs served to quantify the risks associated with local reference levels of COPECs.

EU-wide Central Tendency Exposures (CTEs) were calculated based on arithmetic means, and Reasonably Maximum Exposures (RMEs) were calculated based either on the COPEC-specific 95th percentile Upper Confidence Limit (UCL) or the maximum concentration.

Where appropriate, the potential for ecological risk was determined based on Hazard Quotients (HQs). An HQ was calculated for each COPEC by dividing an exposure or dose by a corresponding toxicity value (i.e., published benchmarks, CBRs, or TRVs). Statistics were also used to determine the presence of risk identified by the toxicity tests and community surveys.

During risk characterization, all HQ-derived risks at the on- or off-Site waterways were compared to their corresponding risk at the reference EU by calculating an Incremental Risk (IR). The IR was obtained by subtracting the reference risk from the Site risk. The presence of risk was deemed unrelated to past Site activities if the reference risk exceeded the Site risk. This approach allowed for a more thorough and accurate assessment of Site-related impacts by factoring in reference COPEC levels.

E.3 GENERAL CONCLUSIONS OF THE BERA

Attachments E.1 to E.8 provide the WOE risk integration by receptor group across the various aquatic habitats evaluated in the BERA. **Attachments E.9 to E.15** summarize the general conclusions on the ecological risk potential for each aquatic habitat. Additional details are provided below.

E.3.1 Benthic invertebrate community

The potential for ecological risk to the benthic community exposed to Site-related contamination was assessed in all of the aquatic habitats using up to six measurement endpoints (depending on the target habitat), as follows:

- Compare COPEC concentrations in bulk sediment samples to sediment benchmarks (the four ponds, main stem of Ely Brook, Schoolhouse Brook, and the EBOR)
- Compare dissolved COPEC concentrations in sediment pore water samples to surface water benchmarks (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Estimate the bioavailability of divalent metals in sediment based on AVS SEM (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Measure survival and growth in two benthic invertebrate species exposed for 96 hours to sediment pore water samples (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Measure survival and growth in two benthic invertebrate species exposed for 10 and 28 days to bulk sediment samples (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Evaluate the structure and function of the invertebrate community in the field (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).

E.3.1.1 The ponds on the east branch of Ely Brook

Bulk sediment chemistry was the only measurement endpoint available to assess risk to these four aquatic habitats. Severe ecological risk to the benthic invertebrate community was expected in pond 5, based on high Cu concentrations. Ponds 3 and 4 could experience minor ecological risk due to small exceedances of Mn (pond 3) and Cu (pond 4). No risk was expected in pond 2. The reliability of these findings is low because it is based on a single, semi-qualitative LOE.

E.3.1.2 The main stem of Ely Brook

All six measurement endpoints indicated the potential for ecological risk to the benthic invertebrate community in the main stem of Ely Brook. This conclusion was supported by the three "chemical" Lines of Evidence (LOEs) (i.e., comparing sediment COPEC levels to benchmarks, comparing pore water COPEC levels to benchmarks, and assessing sediment divalent metal bioavailability based on AVS – SEM) and the three "biological" LOEs (i.e., pore water toxicity testing, bulk sediment toxicity testing, and benthic invertebrate community surveys).

The preponderance of the evidence indicated severe ecological impairment to the benthic invertebrate community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

E.3.1.3 Schoolhouse Brook

Five of the six measurement endpoints indicated the potential for ecological risk to the benthic invertebrate community in the reach of Schoolhouse Brook below the confluence with the main stem of Ely Brook. The three "chemical" LOEs (i.e., comparing sediment COPEC levels to benchmarks, comparing pore water COPEC levels to benchmarks, and assessing sediment divalent metal bioavailability based on AVS – SEM) and two of the three "biological" LOEs (i.e., bulk sediment toxicity testing and benthic invertebrate community surveys) resulted in conclusions of risk. The one exception was pore water acute toxicity testing, which did not show toxicity in the two test species after 96 hours of exposure.

The preponderance of the evidence indicated severe ecological impairment to the benthic invertebrate community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

E.3.1.4 The EBOR

Five of the six measurement endpoints showed a lack of ecological risk to the benthic invertebrate community in the reach of the EBOR below the confluence with Schoolhouse Brook. Two of the three "chemical" LOEs (i.e., comparing sediment COPEC levels to benchmarks and comparing pore water COPEC levels to benchmarks) and the three "biological" LOEs (i.e., pore water toxicity testing, bulk sediment toxicity testing, and benthic invertebrate community surveys) showed no risk. The one exception was assessing sediment AVS – SEM which indicated the potential for divalent metal bioavailability.

The preponderance of the evidence indicated no significant risk to the benthic invertebrate community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

E.3.2 Water column invertebrate community

The potential for ecological risk to the water column invertebrate community exposed to Siterelated contamination was assessed only in the four ponds on the east branch of Ely Brook because they represented the only lentic habitat on or off the Site. One measurement endpoint was used, namely

comparing dissolved COPEC concentrations in surface water samples to benchmarks. The results of a second measurement endpoint based on toxicity testing of surface water using the water flea were invalidated because the test did not meet minimum test acceptability criteria.

The one available LOE for this receptor group showed a low potential for ecological risk in ponds 2 and 3 (associated with small exceedances of dissolved Mn in both cases), but a high potential for ecological risk in pond 5 (associated mainly with high levels of dissolved Cu). No risk was found to water column invertebrates exposed to surface water in pond 4.

The preponderance of the evidence indicated the potential for low level of ecological risk in ponds 2 and 3, and high level of ecological risk in pond 5. The reliability of this conclusion is low because it is based on a single, semi-qualitative LOE.

E.3.3 Fish

The potential for ecological risk to fish populations exposed to Site-related contamination was assessed using up to four measurement endpoints (note: the ponds on the east branch of Ely Brook were excluded from this evaluation because they lacked fish):

- Compare dissolved COPEC concentrations in surface water samples to surface water benchmarks (main stem Ely brook, Schoolhouse Brook, and the EBOR).
- Measure survival and growth in larval fathead minnows exposed for 10 days to surface water samples (main stem of Ely Brook and Schoolhouse Brook).
- Compare COPEC levels measured in whole fish to CBRs (Schoolhouse Brook and the EBOR).
- Evaluate the structure and function of the fish community in the field (Schoolhouse Brook and the EBOR).

E.3.3.1 The main stem of Ely Brook

A potential for severe ecological risk to fish was identified in the main stem of Ely Brook. This conclusion was supported by one "chemical" LOE (i.e., comparing surface water COPEC to benchmarks) and one "biological" LOE (i.e., surface water toxicity testing). A second "biological" LOE (i.e., evaluating the structure and function of the fish community) could not be used because fish were absent from the main stem of Ely Brook, even though it should be able to support fish. This observation gave indirect evidence of the severe impact of AMD on this habitat.

The preponderance of the evidence indicated severe ecological impairment to the fish community in the main stem of Ely Brook in response to AMD. The reliability of this conclusion is high because it is based on multiple lines of evidence, including quantitative biological field data.

E.3.3.2 Schoolhouse Brook

All four measurement endpoints indicated the potential for ecological risk to the fish community in the reach of Schoolhouse Brook below the confluence with the main stem of Ely Brook. The one "chemical" LOE (i.e., comparing surface water COPEC levels to benchmarks) and all three "biological" LOEs (i.e., surface water toxicity testing, fish tissue residue analysis, and fish community surveys) resulted in conclusions of risk. Comparing the fish tissue residues to CBRs provided the weakest evidence in support of risk, presumably because fish with higher tissue residues levels (particularly Cu) died off and would not be available for sampling.

The preponderance of the evidence indicated severe ecological impairment to the fish community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

E.3.3.3 The EBOR

Two of the three measurement endpoints showed a lack of ecological risk to the fish community in the reach of the EBOR below the confluence with Schoolhouse Brook. The one "chemical" LOE (i.e., comparing surface water COPEC levels to benchmarks) showed a low potential for ecological risk associated with exposures to dissolved silver and zinc (but not Cu). Both "biological" LOEs (i.e., surface water toxicity testing and fish community surveys) showed a lack of risk.

However, the fish surveys provided contradictory results. The fish sample collected from the EBOR just downstream of the confluence with Schoolhouse Brook and at one downgradient location showed a healthy community. However, fish samples collected at two more downstream locations showed degraded communities. More sampling at one of those two locations the following year showed a healthy community. This evidence was interpreted to mean that this apparent impairment was not systemic and may have been related to an unknown sampling bias.

The preponderance of the evidence indicated no significant risk to the fish community in this habitat in response to AMD. The reliability of this conclusion is moderate-low because the "chemical" LOE indicated a potential for ecological risk and the fish community surveys gave contradictory results.

E.3.4 AMPHIBIANS

The potential for ecological risk to amphibians exposed to Site-related contamination was assessed only for the four ponds on the east branch of Ely Brook using up to three measurement endpoints (depending on the pond), as follows:

- Compare dissolved COPEC concentrations in surface water samples to published surface water benchmarks (ponds 2 to 5).
- Measure survival and growth in fathead minnow larvae (surrogates for amphibian larval stages) exposed for 7 days to surface water samples (ponds 4 and 5 only).
- Evaluate hatching and survival of wood frog eggs and tadpoles exposed in the field (ponds 4 and 5 only).

Only the first measurement endpoint was assessed in all four ponds. This single "chemical" LOE showed a low potential for ecological risk in ponds 2 and 3 (associated with exceedances of dissolved Mn in both cases), but a high potential for ecological risk in pond 5 (associated mainly with high levels of dissolved Cu). No risk was found to larval amphibians exposed to surface water in pond 4.

The two remaining measurement endpoints were evaluated only in ponds 4 and 5. These two "biological" LOEs identified ecological risk. The surface waters from these two ponds were toxic to fish larvae tested in the laboratory and to tadpoles (but not frog eggs) exposed in the field. The results of the tadpole study were compromised due to unexpected and persistent mortality in the on- and off-Site reference locations. Only the mortality data generated after the first week of tadpole exposure in the field were used semi-qualitatively in the evaluation.

The preponderance of the evidence indicated the aquatic life stages of amphibians experienced low risk in ponds 2 and 3, but high risk in ponds 4 and 5. The reliability of this conclusion is medium because it is based on multiple lines of evidence, including laboratory and field exposures. However, the field exposures using tadpoles only provided partial results.

E.3.5 INSECTIVOROUS BIRDS

The potential for ecological risk to insectivorous birds feeding over the two off-Site waterways was assessed using one endpoint, as follows (note: the four ponds on the east branch of Ely Brook and the main stem of Ely Brook were excluded from this evaluation because they represented too small a feeding habitat):

 Estimate the COPEC residues in winged aquatic insects and use food chain modeling to calculate daily doses to tree swallows for comparison to TRVs (Schoolhouse Brook and the EBOR).

E.3.5.1 Schoolhouse Brook

The available measurement endpoint identified the potential for ecological risk to insectivorous birds feeding over Schoolhouse Brook. Cu was the main risk driver in this habitat, although the risk exceedances were relatively small. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

E.3.5.2 The **EBOR**

The available measurement endpoint identified the potential for ecological risk to insectivorous birds feeding over the EBOR. Cu was the main risk driver in this habitat, although the risk exceedances were small and unlikely to cause severe long-term impairment to this receptor group. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

E.3.6 INSECTIVOROUS MAMMALS

The potential for ecological risk to insectivorous mammals feeding over the two off-Site waterways was assessed using one endpoint, as follows (note: the four ponds on the east branch of Ely Brook and the main stem of Ely Brook were excluded from this evaluation because they represented too small a feeding habitat):

 Estimate the COPEC residues in winged aquatic insects and use food chain modeling to calculate daily doses to small-footed bats for comparison to TRVs (Schoolhouse Brook and the EBOR).

E.3.6.1 Schoolhouse Brook

The available measurement endpoint identified a strong potential for ecological risk to insectivorous mammals feeding over Schoolhouse Brook. Cu was the main risk driver in this habitat. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

E.3.6.2 The EBOR

The available measurement endpoint identified the potential for ecological risk to insectivorous mammals feeding over the EBOR. Cu was the main risk driver in this habitat, although the risk was relatively small. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

E.3.7 PISCIVOROUS BIRDS AND MAMMALS

The potential for ecological risk to piscivorous birds and mammals feeding in the two off-Site waterways was assessed using one endpoint, as follows (note: the four ponds on the east branch of Ely Brook and the main stem of Ely Brook were excluded from this evaluation because they represented too small a feeding habitat and lacked fish):

 Measure the COPEC residues in fish and use food chain modeling to calculate daily doses to belted kingfishers and mink for comparison to avian and mammalian TRVs (Schoolhouse Brook and the EBOR).

E.3.7.1 Schoolhouse Brook

The available measurement endpoint did not identify the potential for ecological risk to piscivorous birds and mammals feeding over Schoolhouse Brook. The reliability of this conclusion is moderate because it is based on measured fish residue values but using simplistic food chain modeling assumptions.

E.3.7.2 The EBOR

The available measurement endpoint did not identify the potential for ecological risk to piscivorous birds and mammals feeding over the EBOR. The reliability of this conclusion is moderate because it is based on measured fish residue values but using simplistic food chain modeling assumptions.

LIST OF ACRONYMS

Ag Silver
Al Aluminum
ALU Aquatic Life Use
AMD Acid Mine Drainage

As Arsenic

AUF Area Use Factor
AVS Acid Volatile Sulfides

Ba Barium

BAF Bioaccumulation Factor

BAV Bioavailability Adjustment Factor

Be Beryllium

BERA Baseline Ecological Risk Assessment

BI Biotic Index

BSAF Biota-to-Sediment Accumulation Factor

BW Body Weight

CBR Critical Body Residue

Cd Cadmium

CERC Columbia Environmental Research Center

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CN Cyanide Co Cobalt

COPEC Contaminant of Potential Ecological Concern

Cr Chromium

CTE Central Tendency Exposure

Cu Copper

CWIBI Cold Water Index of Biologic Integrity

DF Dietary Fraction
DL Detection Limit
DQO Data Quality Objective

DW Dry Weight

EBOR East Branch of the Ompompanoosuc River

EDD Estimated Daily Dose EF Extrapolation Factor

EPA Environmental Protection Agency EPC Exposure Point Concentration

EPT Ephemeroptera, Plecoptera, and Tricoptera

EPTC Ephemeroptera, Plecoptera, Tricoptera, Chironomida

ERAGs Ecological Risk Assessment Guidelines

ER-L Effects Range - Low
ER-M Effects Range - Median
Eq-P Equilibrium Partitioning
ET Ecotox Threshold
EU Exposure Unit

Fe Iron

FIR Food Ingestion Rate
FS Feasibility Study
HQ Hazard Quotient

Hg Mercury

IBI Index of Biotic Integrity

IR Ingestion Rate
IR Incremental Risk
LCV Lowest Chronic Value
LEL Lowest Effect Level
LMWPs Lower Mine Waste Piles

LOAEL Lowest Observed Adverse Effect Level

LOC Level of Confidence LOE Line of Evidence

MAC Maximum Allowable Concentrations

MeHg Methylmercury

mg/kg milligrams per kilogram (parts per million)

mg/kg/d milligrams per kilogram per day

mg/kg BW/d milligrams per kilogram body weight per day

mg/L milligrams per liter (parts per million)

MHG Medium High-Gradient

Mn Manganese Mo Molybdenum

MWIBI Mixed Water Index of Biotic Integrity

NA Not Available

NCP National Contingency Plan

NERL New England Regional Laboratory

Ni Nickel

NOAA National Oceanic and Atmospheric Administration

NOAEL No Observed Adverse Effects Level

NPL National Priorities List

NRWQC National Ambient Water Quality Criteria

ORNL Oak Ridge National Laboratory

PE Performance Evaluation

Pb Lead

PEC Probable Effects Concentration PMA-O Percent Model Affinity of Orders

ppb parts per billion

PPCS-Func. Pinkham-Pearson Coefficient of Similarity – Functional Groups

ppm parts per million RI Remedial Investigation

RME Reasonable Maximum Exposure

ROC Receptor of Concern
RPM Remedial Project Manager
SAV Secondary Acute Value

Sb Antimony

SCM Site Conceptual Model SCV Secondary Chronic Value

Se Selenium

SEL Severe Effect Level

SEM Simultaneously Extracted Metal

SHG Small High-Gradient SIR Sediment Ingestion Rate

SLERA Screening-Level Ecological Risk Assessment

SMDP Scientific Management Decision Point

TAC Test Acceptability Criterion

TAL Target Analyte List

TCL Target Compound List TDS Total Dissolved Solids

T&E Threatened and Endangered TEC Threshold Effect Concentration

Th Thallium

TOC Total Organic Carbon
TRV Toxicity Reference Value
TSS Total Dissolved Solids
UCL Upper Confidence Limit
UMWPs Upper Mine Waste Piles

USFWS United States Fish and Wildlife Service USGS United States Geological Survey

V Vanadium

VTDEC Vermont Department of Environmental Conservation
VTNNHP Vermont Nongame and Natural Heritage Program
WBOR West Branch of the Ompompanoosuc River

WIR Water Ingestion Rate WOE Weight of Evidence

WW Wet Weight

Zn Zinc

SECTION 1.0: GENERAL INTRODUCTION

1.1 SCOPE AND OBJECTIVES

This report presents the aquatic portion of the Baseline Ecological Risk Assessment (BERA) for ecological receptors potentially exposed to mine-related wastes released by the Ely Copper Mine Superfund Site (the Site), in Vershire, VT. The BERA assesses the potential risk from exposure to contaminated surface water and sediment at the Site (i.e., the main stem of Ely Brook and Ponds 2 through 5 located on the east branch of Ely Brook) and down-gradient from the Site (Schoolhouse Brook and the East Branch of the Ompompanoosuc River [EBOR]).

The objectives of this BERA are to describe the likelihood, extent, and severity of ecological risk under existing conditions to aquatic receptors (e.g., invertebrates, fish, amphibians) living in the affected waterways, or bird and mammal wildlife receptors exposed via the food chain to mine-related contamination in the water ways. A separate BERA report will address risk to terrestrial receptors.

The BERA supports the Ely Mine Remedial Investigation/Feasibility Study (RI/FS) being conducted under the regulatory framework of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 U.S.C 9601, et seq., and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 CRF Part 300.

The Ely Mine RI report was developed concurrently and provided much of the Site information included in this report.

1.2 REGULATORY FRAMEWORK

The following guidance and reference documents were used to prepare the aquatic portion of the BERA for the Site:

- USEPA. 1997. Ecological Risk Assessment for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Environmental Response Team, Edison, NJ.
- USEPA. 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.
- USEPA. 2000. Guidance for the Data Quality Objective Process. EPA/600/R-96/055.
- USEPA. 2001. Planning for Ecological Risk Assessment: Developing Management Objectives. EPA/630/R-01/001A.
- USEPA. 2002. Principles for Managing Contaminated Sediment Risks at Hazardous waste Sites.
 OSWER Directive 9285.6-08.
- USEPA. 2005a Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. EPA/540/R-05/012.

1.3 REPORT ORGANIZATION

The major sections of the aquatic BERA report are organized as follows:

Section 2.0 Site History and Description

This section describes the historical activities at the Site and the physical and ecological setting.

Section 3.0 Database development and data processing

This section describes: (a) the analytical chemistry data sets collected at the Site, (b) issues with analytical data quality; (c) the data sets used in the BERA, and (d) the data summary methods.

Section 4.0 Baseline Problem Formulation

This section: (a) selects the final Contaminants of Potential Ecological Concern (COPECs) at the ponds and the three streams at and downstream from the Site, (b) describes the Site Conceptual Model (SCM), (c) identifies the Exposure Units (EUs) used in the BERA, (d) identifies the Receptors of Concern (ROCs) for the different trophic levels, (e) selects the assessment endpoints and measures of effect, and (f) outlines the Weight of Evidence (WOE) approach.

Section 5.0 Characterization of Exposure

This section describes: (a) surface water, pore water, and sediment sampling results used to calculate central tendency and reasonable maximum Exposure Point Concentrations (EPCs); (b) the sampling effort to obtain fish for tissue residue analysis; and (c) the dietary exposure models specific to the target wildlife receptors.

Section 6.0 Characterization of Effects

This section summarizes: (a) the surface water and sediment benchmarks; (b) the results of field and laboratory toxicity tests using water column invertebrates, benthic invertebrates, wood frog eggs and tadpoles, and larval fish; (c) the field studies to assess the health of the benthic invertebrate and fish communities; (d) the fish Critical Body Residues (CBRs) to compare against tissue COPECs measured in field-collected fish; and (e) the bird and mammal Toxicity Reference Values (TRVs) to quantify risk from the dietary exposures calculated using the food chain models.

Section 7.0 Risk Characterization

This section combines the measures of exposure and toxicity to determine the likelihood of adverse effects to the target receptor groups. The Hazard Quotient (HQ) is used to identify the COPECs most responsible for risk. Residual risk, if appropriate, is also calculated by comparing site risk against the risk at local reference areas. The significance of the toxicity test responses are evaluated using statistical analysis. The results from the benthic invertebrate and fish community studies are compared to Site reference data and published indices. The WOE for each measurement endpoint is included in the evaluation to weigh the various lines of evidence. The section concludes with an uncertainty analysis.

Section 8.0 Summary and Conclusions

This section provides a summary and conclusion regarding the presence and extent of ecological risk at the various aquatic habitats potentially affected by acid mine drainage.

Section 9.0 References

This section provides all of the references used in the BERA report.

SECTION 2.0: SITE HISTORY AND DESCRIPTION

2.1 SITE DEFINITION

The Site is an abandoned Copper (Cu) mine located on Beanville Road in the Village of Vershire, Orange County, Vermont (Figure 2.1). The property covers about 1,800 acres, 275-350 acres of which were used for Cu mining activities from 1821 to 1920, with peak production in the 1870s and 1880s. Mining operations stopped in 1905, but resumed during World War I when a flotation mill was constructed onsite to process material from ore dumps. Additional activity consisted of removing "dump-ore" from the property between 1949 and 1950. The Site is currently owned by Ely Mine Forest Inc. and Green Crow Corporation. Portions of it are managed for commercial timberland.

2.2 SITE HISTORY

The Site extends up the Ely Brook watershed to the crest of a ridge. Several adits and inclined shafts accessed the ore body in a northeasterly direction near the top of the ridge. The topography consists of north-south trending hills and valleys. Piles of waste rock, smelter waste, and tailings generated from mining processes are scattered on the property. The smelter waste pile covers about 4.3 acres. It is located along the banks of Schoolhouse Brook at the southern section of the property. This pile consists of slag that exhibits a metallic luster. The tailings pile is located in the central section of the property and covers about 10.8 acres. This pile consists of a fine-grained material, reddish-brown in color at the surface. Several large waste rock piles are located in the upper section of the property closest to the old mine shafts and adits. All of these materials are rich in metals and sulfides. Sulfuric acid is produced and metals are dissolved and mobilized as water passes over and through these piles. This chemical activity results in low pH, metal-enriched Acid Mine Drainage (AMD) which enters local waterways.

Remnants of stone works from past mining operations are found throughout the property, consisting mostly of retaining walls. Vegetation is sparse in the vicinity of the waste rock pile, tailings pile, and the smelter waste pile. Woodlands cover the rest of the property. Downed trees and recent beaver dams are present in the small ponds located on the upper reach of the East Branch of Ely Brook. The Site has no restrictive barriers to pedestrian access. Local people use the property for recreation, including target practicing, hiking, and four-wheeling. A gun club has permission to access the property for hunting.

Past mining operations at the Site included cobbing, roasting, and smelting. The local ore, which averaged 3.3% Cu, was fragmented, or cobbed, to a product containing about 7.0% Cu. This material was smelted to produce a Cu matte, which consisted of a molten mixture of Cu/iron sulfide. A flotation mill was built in 1918 to extract more Cu from existing waste piles on the property. The extraction operation generated 19,000 tons of waste material in ten months, with a Cu level averaging 1.34%. The Bureau of Mines estimated that mining and smelting generated about 100,000 tons of tailings and slag at the Site.

The Site has been investigated by State and Federal agencies, and private contractors over the past 20 years. Numerous samples of mine tailings, slag, surface water, pore water, soil, sediment, ground water, and fish have been collected and analyzed for inorganics. The results show high levels of metals relative to nearby reference concentrations. The Vermont Department of Environmental Conservation (VT DEC) collected water samples and inventoried fish species in Schoolhouse Brook in 1988. Only blacknose dace (*Rhinichthys atralutus*) were present downstream of the confluence with Ely Brook. However, blacknose dace, longnose dace (*R. cataractae*), slimy sculpin (*Cottus cognatus*), brook

trout (Salvelinus fontinalis), and rainbow trout (Oncorhynchus mykiss) were collected from a non-impaired stretch of Schoolhouse Brook upstream of the confluence with Ely Brook.

The VT DEC also concluded in 1991 that Cu affected the macroinvertebrate community of Schoolhouse Brook, downstream of the confluence with Ely Brook. A second macroinvertebrate survey on Schoolhouse Brook was conducted by the Bureau of Mines in 1995 to determine the impact of Site discharge. The study concluded that mine drainage had "slightly" impacted the water quality of Schoolhouse Brook as noted by physical and biological factors. More studies in support of this Baseline Ecological Risk Assessment (BERA) were performed between 2003 and 2007 on Ely Brook, Schoolhouse Brook, and the EBOR. These studies consisted of additional sampling (surface water, sediment, and pore water), habitat quality surveys, community surveys (benthic invertebrates and fish), tissue residue analysis (fish), and laboratory and field toxicity testing (invertebrates, fish, and amphibians).

The Bureau of Mines built an experimental biological treatment system at the Ely Copper Mine in 1995. A portion of Ely Brook was diverted into five 32-gallon barrels in series for treatment with manure, compost, wood chips, and limestone. These materials served as a bacterial sulfate-reduction system to precipitate metals. Water samples were collected monthly from the system and Ely Brook. The treatment removed metals and sulfate, increased alkalinity, and decreased the acidity of the water. However, the data were inconsistent due to a lack of regular monitoring and system maintenance.

Note that the remedial investigation report prepared for the former Ely Copper Mine provides more details on the physical setting and the history of this Site.

SECTION 3.0: DATABASE DEVELOPMENT AND DATA PROCESSING

3.1 DATA SOURCES

Table 3.1 summarizes the analytical data sets which were used in the aquatic portion of the BERA to calculate Exposure Point Concentrations (EPCs).

Table 3.1: Summary of analytical chemistry data sets used in the aquatic portion of the BERA		
Sampling Dates	Sampling Organization	Major Analytes
	Sedime	nt
8/25/1998	USGS	Metals, AVS/SEM
7/19/2000	ADL	Metals, AVS/SEM
10/2/2000	ADL	Metals, AVS/SEM
9/5/2001	ADL	Metals
9/10/2001	ADL	Metals
11/1/2004 — 11/4/2004	URS	Metals, AVS/SEM
6/20/2006 - 6/21/2006	USGS	Metals
8/22/2006 — 8/23/2006	USGS	Metals, AVS/SEM
9/19/2006	USGS	Metals
	Surface W	/ater
5/8/2000	ADL	Metals (filtered and unfiltered)
7/6/2000	ADL	Metals (filtered and unfiltered)
7/19/2000	ADL	Metals (filtered and unfiltered)
9/20/2000	ADL	Metals (filtered and unfiltered)
5/1/2001 - 5/3/2001	ADL	Metals (filtered and unfiltered)
9/5/2001	ADL	Metals (filtered and unfiltered)
9/10/2001	ADL	Metals (filtered and unfiltered)
4/10/2002 - 4/11/2002	CRREL	Metals (filtered and unfiltered)
5/21/2002	CRREL	Metals (filtered and unfiltered)
6/20/2002	CRREL	Metals (filtered and unfiltered)
7/24/2002	CRREL	Metals (filtered and unfiltered)
8/20/2002	CRREL	Metals (filtered and unfiltered)
9/19/2002	CRREL	Metals (filtered and unfiltered)
11/1/2004 — 11/4/2004	URS	Metals (filtered and unfiltered), pH
10/5/2005	EPA	Metals (filtered and unfiltered)
5/2/2006 - 6/23/2006	EPA	Metals (filtered and unfiltered), pH

Table 3.1: Summary of analytical chemistry data sets used in the aquatic portion of the BERA			
Sampling Dates	Sampling Organization	Major Analytes	
6/19/2006	EPA	Metals (filtered and unfiltered), pH	
8/21/2006 – 8/23/2006	USGS	Metals (filtered and unfiltered), pH	
9/19/2006	USGS	Metals (filtered and unfiltered), pH	
4/9/2007	EPA	Metals (filtered and unfiltered)	
4/11/2007	EPA	Metals (filtered and unfiltered)	
5/2/2007 – 5/3/2007	URS	Metals (filtered and unfiltered), pH	
Pore Water			
8/21/2006 – 8/23/2006	USGS	Metals (filtered and unfiltered)	
9/19/2006 – 9/20/2006	USGS	Metals (filtered)	
Fish Tissue			
9/12/2006 - 9/13/2006	USGS	Metals (whole fish)	

ADL = Arthur D Little Consultants; AVS = acid volatile sulfides; CRREL = Cold Regions Research and Engineering laboratory; EPA = Environmental Protection Agency; SEM = simultaneously extracted metals; URS = URS Corp.; USGS = United States Geological Survey.

The analytical data were extracted from a master Access database prepared by the U.S. Geological Survey in 2007. The final data sets used in the BERA are provided in **Appendix 1** (sediment), **Appendix 2** (pore water), **Appendix 3** (surface water), and **Appendix 4** (fish tissue).

3.2 DATA QUALITY

The ultimate outcome of the data evaluation and summarization process is a database of the highest quality. The data sets used in this BERA were developed by compiling analytical data collected from the various ponds and streams at and down-gradient from the Site.

Analytical data were compiled and sorted by environmental matrix. Bulk sediment, sediment pore water, and surface water from the ponds and the three streams, together with fish collected from Schoolhouse Brook and the EBOR, were retained as target media for evaluation in the BERA.

This subsection summarizes the following topics:

- The surface water and pore water collection methods, number of samples collected, and the difference between total (unfiltered) versus dissolved (filtered) metals.
- The bulk sediment collection methods, number of samples collected, and Acid Volatile Sulfides (AVS) and Simultaneously Extracted Metals (SEM) measurements.
- The fish collection methods, number of samples collected, and whole fish tissue residue analyses.

3.2.1 Evaluation of qualified and coded data

All results assigned qualifiers indicating that the analyte was positively detected or presumptively present (e.g., data qualified as J or EB) were retained as detected results in the analytical database and used as reported. All results assigned qualifiers indicating that the analyte was not positively detected (i.e., U, UJ) were retained only as non-detected results in the analytical database. Finally, any result considered of inadequate quality for use in risk assessment (i.e., data qualified as R) was omitted from the risk calculations.

3.3 COMPILING DATA SETS FOR USE IN THE AQUATIC PORTION OF THE BERA

The final product of the data evaluation and summarization process is a comprehensive database for use in quantitative ERA. Individual data sets were developed by compiling analytical results for each matrix of interest (sediment, pore water, surface water, and fish tissue), analyte group (i.e., dissolved metals [normalized for hardness, when applicable] and total metals) and target locations (i.e., the ponds on the east branch of Ely Brook, the main stem of Ely brook, Schoolhouse Brook, the EBOR, and the reference locations).

Two decisions were made about including particular data in the evaluation. The first decision pertained to three sampling locations (EBT2-430M, EBT2-383M, EBT-315M) which were originally identified in the database as "Ely Brook". Available maps showed that these samples were in fact collected at the outlets of pond 1 (EBT2-430M), pond 2 (EBT2-383M), and pond 4 (EBT-315M) located on the east branch of Ely Brook. The surface water and sediment data from these locations were included in the ponds 1, 2, and 4 data sets.

The second decision pertained to surface water data collected in 2002 by the CRREL ISCO samplers (one sampler each at Ely brook, Schoolhouse brook, and the EBOR). These data were not included because they consisted of a series of samples collected over 24 hours instead of one discrete sample at each sampling location. It would have required averaging the samples taken over 24 hours in order to develop a single value.

3.3.1 Hardness-dependent metals

The toxicities of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), silver (Ag), and zinc (Zn) vary with surface water hardness (EPA, 2006). All else being equal, toxicity drops in hard water but increases in soft water at a metal-specific but non-linear rate. Hard water has more calcium to compete with these metals for binding sites on gill tissue. Calcium binding protects the tight junctions between gill cells, thereby avoiding loss of blood electrolytes or increased inflow of water. Those junctions become less tight when they are occupied by metals, which can result in excessive electrolyte loss in fish, and ultimately death.

The surface water samples used in the BERA were collected over several years between March and November. Surface water hardness varies seasonally in the ponds and the three streams, with the lowest hardness observed during spring snowmelt and the highest hardness occurring in summer. Conversely, metal concentrations in surface water are highest in early spring and lowest during base flow in late summer.

It would be inaccurate to calculate exposure concentrations for aquatic invertebrates, fish, and amphibians without accounting for the differences in surface water hardness between sampling locations and sampling times. The reason is that 20 μ g/L Cu at 25 mg/L hardness could be quite toxic, whereas the same Cu level at 175 mg/L hardness would not be toxic. This issue is not relevant to wildlife

receptors that ingest water from the streams because their total uptake of metals via drinking is independent of hardness.

Appendix 5 describes the approach to normalize Cd, Cr, Cu, Pb, Ni, Ag, and Zn concentrations to a standard hardness of 100 mg/L for quantifying exposures to aquatic receptors. *Any hardness value can be used for this purpose without affecting the outcome*. However, 100 mg/L was used as the standard value because it represents the concentration selected by USEPA (2006) to calculate the National Recommended Water Quality Criteria (NRWQC).

3.3.2 Data summarization method

Each data set was summarized to provide the following descriptors:

- frequency of detection (= number of detected values over the number of samples analyzed),
- minimum detected value (with data qualifier),
- maximum detected value (with data qualifier), and
- sampling location of the maximum detected value.

The analytical data for total metals (unfiltered and not normalized for hardness) and dissolved metals (filtered and normalized for hardness) was summarized separately.

The following procedures were used to calculate the summary statistics used in the BERA:

- Results assigned qualifiers indicating that an analyte was positively detected or presumptively
 present were retained for use as reported in the risk calculations.
- Results assigned qualifiers indicating that an analyte was not positively detected were retained at one half of their Detection Limit (DL) for use in the exposure calculations.
- Data qualified as rejected were not used in the risk calculations.
- Data for samples collected from the same location but at different times were treated as separate samples.
- Data from duplicate samples (i.e., samples collected at the same location and the same time) had not been incorporated into the database at the time of this BERA evaluation.
- Pro UCL (version 4.00.02) was used to test datasets for outliers. All potential outliers were included in this evaluation.

SECTION 4.0: BASELINE PROBLEM FORMULATION

4.1 SCOPE OF THE BASELINE PROBLEM FORMULATION

The baseline problem formulation establishes the goals, breadth, and focus of the BERA. It also defines the assessment endpoints, or specific ecological values to be protected (EPA, 1997). This process consists of the following activities:

- Refining the list of COPECs at the Site based on the outcome of the Screening-Level Ecological Risk Assessment (SLERA);
- Characterizing the potential ecological effects of the COPECs on aquatic resources;
- Reviewing and refining the information on the fate and transport of the COPECs
- Developing a detailed SCM;
- Developing management goals and objectives to provide an explicit statement of the desired condition of the valued ecosystem being protected;
- Identifying assessment endpoints with their associated risk questions; and
- Identifying measurement endpoints to help quantify the potential for ecological risk to the assessment endpoints.

4.2 RESULTS OF THE SLERA

A simplified SLERA was completed in 2007 as Steps 1 and 2 in the Ecological Risk Assessment Guidance (ERAG) process (see **Appendix 6**). This SLERA used all available surface water and sediment analytical data collected from various waterways affected by the Site to identify potential aquatic COPECs. The simplified SLERA divided the analytical data into four EUs, as follows:

- Ponds 2 to 5 combined (excluding pond 1, the upstream reference location) in the upper reaches of the East Branch of Ely Brook;
- The main stem of Ely Brook (about 0.6 miles long), between where the AMD-impacted small tributaries enter Ely Brook and the confluence with Schoolhouse Brook;
- Schoolhouse Brook (about 2.2 miles long), between where the main stem of Ely Brook enters Schoolhouse brook and the confluence with the EBOR; and
- The EBOR (around 8 to 10 miles long), downstream of the confluence with Schoolhouse Brook.

The maximum measured concentrations of metals in each EU were used as the conservative exposure concentrations, whereas screening-level surface water and sediment benchmarks were used as a measure of toxicity. The maximum concentrations of the six hardness-dependent metals (i.e., Cd, Cu, Pb, Ni, Ag, and Zn) were first normalized to 100 mg/L hardness (see **Appendix 5** for details on the procedure) before they were compared to the EPA's standard NRWQCs, which apply to surface water containing 100 mg/L hardness.

HQs were calculated by dividing the maximum metal concentrations from each EU into their respective screening benchmarks. A metal was retained as a COPEC if the HQ exceeded 1.0., no screening benchmark was available, or the maximum detection limit of a non-detected analyte exceeded its benchmark.

The SLERA showed that many metals in surface water and sediment exceeded their conservative screening benchmarks in the four aquatic EUs. These exceedances present a potential for adverse effects to aquatic receptors residing in those aquatic habitats or use them for reproduction. It was recommended that the ERA should continue to a BERA to better quantify this potential for ecological risk.

4.3 NATURE AND EXTENT OF CONTAMINATION IN AQUATIC HABITATS

The SLERA identified many mining-related metals in surface water and sediment which exceeded conservative benchmarks. The metals with the highest screening-level HQs are summarized in **Exhibit 4.1** for each EU and matrix (see **Appendix 5** for additional details).

Exhibit 4.1: Major COPECs identified by the SLERA		
Exposure Area	Surface water	Sediment
The ponds	Cu (HQ = 74), Cd (HQ = 7.3), and Zn (HQ = 3.1); and	Ba (HQ = 539), Cu (HQ = 112), and Zn (HQ = 4.2)
Main stem Ely Brook	Cu (HQ = 736), AI (HQ = 391), and Cd (HQ = 34.9)	Ba (HQ = 337), Cu (HQ = 209), and Se (HQ = 152)
Schoolhouse Brook	Cu (HQ = 22.5); Cd (HQ = 3.3), and Al (HQ = 2.1)	Ba (HQ = 284), Cu (HQ = 44), and Se (HQ = 33.8)
East branch of the Ompompanoosuc River	Zn (HQ = 75.8), Cu (HQ = 8.5), and Ba (HQ = 1.7)	Ba (HQ = 279), Cu (HQ = 8.2), and Se (HQ = 2.8)

Figure 4.1 shows the major tributaries of Ely Brook and the major mining-related features described in this subsection. **Figure 4.2** highlights the five ponds located in the upper reach of the east branch of Ely Brook. **Figure 4.3** shows the relationship between Ely Brook and the two down-gradient waterways (i.e., Schoolhouse Brook and the EBOR).

Ely Brook

Ely Brook is a small high-gradient cold-water stream (maximum width between five and seven ft). The brook, which represents the major drainage feature at the Site, flows in a general north to south direction between its source located in the hills west of the Site to its confluence with Schoolhouse Brook. Ely Brook has a total drainage area of 0.43 mi², a length of about 0.9 mile, and a range in altitude from about 977 ft to 1264 ft. The surficial geology of the basin is predominantly till. A qualitative geomorphic characterization of the brook found about 45% riffles, 42% runs, and 13% pools. Several tributaries flow into Ely Brook from the east (the "Site" side), as follows.

The <u>west branch</u> represents the upper half of Ely Brook. Only the upper reach of the west branch has not been affected by AMD. Its substrate consists of pebbles and boulders. An intermittent tributary which originates at a small mine waste pile by Shaft No. 4, located 200 ft west of the Upper Mine Waste Piles (UMWPs) provides mine-derived contamination (see **Figure 4.1**). This intermittent tributary enters the west branch about 500 ft upstream from its confluence with the east branch (see below).

The <u>east branch</u> of Ely Brook originates in a poorly-drained, swampy valley on the eastern side of the Site (see **Figures 4.1** and **4.2**). This valley supports five small ponds, some of which are maintained

by beavers. Pond 1, the most upstream of the ponds, is by far the largest body of water (about 0.94 acres) and forms the source for the east branch. The four remaining ponds are located downstream of each other and are all hydraulically connected.

Pond 1 originates behind an earth and rubble dam constructed in the late 19th century. It served as a water-supply reservoir to provide a continuous source of water to the nearby mining facilities. Historical information suggests that Pond 1 is spring-fed. A small seep of AMD enters Pond 4. A waste rock pile is located adjacent to Pond 5 (see **Figure 4.2**).

The east branch exits Pond 5 and flows due south, parallel to the Site access road, for about 400 ft before making a sharp turn to the west. It then cuts through the Lower Mine Waste Piles (LMWPs) before merging with the west branch of Ely Brook. The east branch varies in maximum width between one and four ft, depending on location, flow, and season. The substrate in this tributary after it leaves the swampy valley consists almost entirely of mine-derived waste. The surface water of this tributary upon exiting Pond 5 is acidified and enriched with metals.

The <u>north branch</u> of Ely Brook starts as a network of small drainage channels which have their source at the UMWPs (see **Figure 4.1**). The water in this branch originates from several permanent seeps at the base of the UMWPs. The volume of water flowing through the north branch fluctuates, but surges during spring snowmelt or periods of high rainfall as a result of increased surface run-off. The maximum width varies between less than one ft and three ft, depending on location, flow, and season. The north branch flows along the western edge of the LMWPs before merging with the east branch. The substrate in this tributary consists entirely of mine-derived waste. The surface water in the north branch is acidified and enriched with metals.

The <u>main stem</u> represents the lower half of Ely Brook. A small, intermittent tributary flows between the former ore roast beds and this section of Ely Brook. The main stem flows between where the west and east branches converge and the confluence with Schoolhouse Brook (see **Figure 4.1**). The surface water of the main stem is highly acidic (pH < 4.0) due to AMD input from the east, west, and north branches, plus the former roast bed tributary. It also contains dissolved Cu levels between two to three orders of magnitude above EPA's acute and chronic surface water guidelines for the protection of aquatic life. The main stem shows all of the signs of an AMD-impacted stream: it is biologically devoid, the substrate consists entirely of mine-derived waste and has a pronounced orange-red color due to excessive metal precipitation.

More details on the physical setting of Ely Brook are available from Seal et al. (2010).

Schoolhouse Brook

Schoolhouse Brook is a small, high-gradient stream with a total drainage area of 9.7 mi², a length of about 4.5 miles, and a range in altitude from about 693 ft to 1584 ft. This brook flows in a general west to east direction along the southern border of the Site (see **Figure 4.1**). Two tributaries flow into Schoolhouse Brook below the confluence with Ely Brook. The contributing drainage area for these tributaries is 2.7 mi².

The surficial geology of the basin is predominantly till. A qualitative geomorphic characterization of the stream segment between Ely Brook and the EBOR found about 95% riffles, 3% runs, and 2% pools. The substrate consists mostly of coarse sand, gravel, cobbles, and boulders. The average slope for this stream segment is 2.6 percent. However, a few short sections of Schoolhouse Brook flatten out, slow down, and become more depositional near the confluence with the EBOR.

The main stem of Ely Brook joins Schoolhouse Brook about 100 ft upstream from the smelter slag piles. Schoolhouse Brook then flows next to the slag piles, which likely represent an independent source of COPECs, for about 300 ft. It joins the EBOR about two miles downstream from the Site. More details on the physical setting of Schoolhouse Brook are available from Seal et al. (2010).

Past investigations indicated that high AMD has affected the benthic invertebrate and fish communities in Schoolhouse Brook downstream from the confluence with Ely Brook. Surface water analyses showed that Cu exceeded its chronic surface water benchmark further downstream.

• East Branch of the Ompompanoosuc River

The EBOR joins the west branch of the Ompompanoosuc River (WBOR) at Union Village to form the Ompompanoosuc River, which flows into the Connecticut River. The EBOR above the confluence with the WBOR has a total drainage area of 64.8 mi² and is characterized as a medium high-gradient stream. The surficial geology of the EBOR basin is predominantly till. However, the surficial geology underlying the stream channel in the study area is characterized as delta gravel, lake sand, and pebbly sand.

A qualitative geomorphic characterization of a stream segment of the EBOR below the confluence with Schoolhouse Brook found about 39% riffles, 51% runs, and 10% pools. The average slope for this stream segment is 0.5 percent. The substrate consists mostly of sand, gravel, cobbles, and boulders. More details on the physical setting of Schoolhouse Brook are available from Seal et al. (2010).

Even though the EBOR flows well downstream from the site (see **Figure 4.3**), it may still experience minor impacts from past or current releases of AMD via Ely Brook and Schoolhouse Brook, particularly during the snowmelt in early spring.

4.4 REFINEMENT AND SELECTION OF THE FINAL COPECS

4.4.1 Introduction

The COPECs identified in the SLERA were re-evaluated and then refined as the first task in the Baseline Problem Formulation. No additional data were collected and no changes were made to the screening benchmarks since the submission of the SLERA. Hence, the re-evaluation did not proceed on those bases. Instead, the COPECs were refined using EPA guidance (USEPA, 2001a), which states that one objective of the Baseline Problem Formulation is to refine the COPECs to better focus the BERA. The following components were considered in the refinement process:

- 1) Supplemental Component 1: Reference levels. USEPA guidance cautions that comparison to local reference levels generally cannot be used at this stage to eliminate COPECs owing to the need to fully assess site risks (EPA, 1997). The accepted approach in EPA Region 1 is to consider reference concentrations only in the risk characterization part of the BERA by calculating incremental risk, if necessary. A comparison to reference levels was not conducted at the COPEC refinement stage based on this requirement and on discussions with the Remedial Project Manager (RPM).
- 2) Supplemental Component 2: Frequency and Magnitude of Detection. ERA guidance allows COPECs to be eliminated based on frequency of detection, given adequate data and after consultation with the RPM. The databases used in the SLERA were extensive and represented sampling performed in the spring, summer, and fall over several years at various locations within each EU. Based on the prevailing approach in EPA Region 1, and after consultation with the

RPM, it was decided that a COPEC would be eliminated at this stage if it was detected in less than 5% of the samples collected from an EU, assuming that at least 20 samples were available from that EU.

3) Supplemental Component 3: Dietary Considerations. The USEPA considers calcium, iron, magnesium, sodium, and potassium as essential physiological electrolytes (USEPA, 2001). These compounds are not believed to pose ecological risk when present at concentrations that allow them to function as nutrients. Alternatively, the USEPA also states that other inorganics such as selenium, copper, molybdenum, and boron can quickly transition from essential nutrients to toxicants at only slightly higher concentrations and can therefore not be eliminated. The essential physiological electrolytes, except for iron, were removed for this screening, because they were considered to be at concentrations that posed no potential for ecological risk. Iron was retained as a COPEC because of its high levels at some locations in the waterways affected by the Site.

The final sediment, pore water, and surface water COPEC were selected by EU as follows:

- A chemical was retained as COPEC if: (1) its maximum detected concentration exceeded its screening benchmark, (2) a screening benchmark was not available, or (3) the maximum detection limit of a non-detected analyte exceeded its benchmark when less than 20 samples were collected for analysis.
- A chemical was removed as a COPEC if: (1) its maximum detected concentration fell below its screening benchmark, (2) it was detected in less than 5% of the samples if at least 20 samples were collected for analysis, or (3) the maximum detection limit of a non-detected analyte did not exceed its benchmark.

The tissue COPECs for fish sampled in Schoolhouse Brook and the EBOR were selected as follows:

- A chemical was retained as a fish tissue COPEC if: (1) it was present above its detection limit in at least one fish sample, (2) it was not present above its detection limit in any fish samples, but the maximum detection limit exceeded the no effect fish CBR, or (3) it was not present above its detection limit in any fish samples, but a no effect fish CBR was not available.
- A chemical was removed as a fish tissue COPEC if it was not present above its detection limit in all fish samples and the maximum detection limit was less than the no effect CBR.

The surface water COPECs for use in wildlife food chain modeling (i.e., to estimate COPEC levels in drinking water) were selected as follows:

- A chemical was retained as a surface water COPEC for food chain modeling if it was detected in at least one surface water sample collected from an EU.
- A chemical was removed as a surface water COPEC for food chain modeling if: (1) it was not
 detected in any of the surface water samples from an EU, or (2) it was detected in less than 5%
 of the samples if at least 20 samples were collected for analysis.

The sediment COPECs for use in wildlife food chain modeling (i.e., to estimate COPEC levels in aquatic insects) were selected as follows:

- A chemical was retained as a sediment COPEC for food chain modeling if it was detected in at least one sediment sample collected from an EU.
- A chemical was removed as a sediment COPEC if: (1) it was not detected in any of the sediment samples from an EU, or (2) it was detected in less than 5% of the samples if at least 20 samples were collected for analysis.

4.4.2 Sediment COPECs for benthic invertebrates

The final sediment COPECs for benthic invertebrates are shown in **Attachments 4.1 to 4.4** (the four ponds on the east branch of Ely Brook), **Attachment 4.5** (main stem Ely Brook), **Attachment 4.6** (Schoolhouse Brook), and **Attachment 4.7** (the EBOR). **Attachment 4.8** summarizes the final sediment COPECs at the EUs evaluated in this BERA.

4.4.3 Pore water COPECs for benthic invertebrates

The final pore water COPECs for benthic invertebrates are shown in **Attachment 4.9** (main stem Ely Brook), **Attachment 4.10** (Schoolhouse Brook), and **Attachment 4.11** (the EBOR). **Attachment 4.12** summarizes the final pore water COPECs at the EUs evaluated in this BERA.

4.4.4 Surface water COPECs for aquatic receptors

The surface water COPECs for aquatic receptors (i.e., water column invertebrates, fish, and amphibian embryo-larvae) were identified using the <u>dissolved</u> metals data, which represent the bioavailable fraction responsible for toxicity (EPA, 2006). The final surface water COPECs for aquatic receptors are shown in **Attachments 4.13 to 4.16** (the four ponds on the east branch of Ely Brook), **Attachment 4.17** (main stem Ely Brook), **Attachment 4.18** (Schoolhouse Brook), and **Attachment 4.19** (the EBOR). **Attachment 4.20** summarizes the final surface water COPECs for aquatic receptors at the EUs evaluated in this BERA.

4.4.5 Fish tissue COPECs

The fish tissue COPECs to compare against fish CBRs were identified separately for brook trout and blacknose dace in Schoolhouse Brook (**Attachments 4.21 and 4.22**) and in the EBOR (**Attachment 4.23 and 4.24**). **Attachment 4.25** summarizes the final fish tissue COPECs to compare against fish CBRs at the EUs evaluated in this BERA.

A second set of fish tissue COPECs for use in wildlife food chain modeling was created by combining the brook trout and blacknose dace tissue date from Schoolhouse Brook (**Attachment 4.26**) and the EBOR (**Attachment 4.27**). Combining the two data sets was needed for food chain modeling due to the minimal number of trout samples collected from Schoolhouse Brook (n = 1) and the EBOR (n = 2). **Attachment 4.28** summarizes the final fish tissue COPECs for use on food chain modeling at the EUs evaluated in this BERA.

4.4.6 Surface water COPECs for use in wildlife food chain modeling

Wildlife receptors foraging along the waterways are exposed to <u>total metals</u> (with no hardness adjustment) when ingesting surface water. The final surface water COPECs for wildlife receptors are shown in **Attachment 4.29** (Schoolhouse Brook) and **Attachment 4.30** (EBOR). **Attachment 4.31** summarizes the final surface water COPECs for wildlife receptors foraging at the EUs evaluated in this BERA (note: the ponds on the east branch of Ely Brook were not included because they were considered

too small to provide viable habitat for birds and mammals feeding on aquatic organisms; the main stem of Ely Brook was also excluded because this habitat is largely devoid of aquatic insects and fish under current conditions).

4.4.7 Sediment COPECs for use in wildlife food chain modeling

Three of the four wildlife receptors evaluated in this BERA were assumed to feed on aquatic or emergent insects. However, no insects were collected for chemical analyses to generate tissue residue data for use in food chain modeling. Instead, COPEC concentrations in insects were estimated using generic sediment-to-biota accumulation factors (see Section 5.4.3 for more details). The COPECs used in those calculations were the same ones as the sediment COPECs identified in Section 4.4.1, specifically the sediment COPECs in Schoolhouse Brook (Attachment 4.6) and the EBOR (Attachment 4.7) where insectivores were assumed to forage.

4.5 AQUATIC COMMUNITIES

4.5.1 Aquatic habitat description

The aquatic habitats evaluated in this BERA were described in Section 3.3. The five small ponds on the east branch of Ely Mine are the only lake-like habitats at the Site, even though surface water flows from one pond into the other. The other affected waterways are the main stem of Ely Brook, Schoolhouse Brook, and the EBOR. These streams are all flowing habitats, characterized by sand, gravel and boulder substrate, except for Ely Brook which has substrate dominated by mine waste (i.e., finer-grained tailings material).

4.5.2 Aquatic animals

Past field observations indicated that Ponds 1, 2, 3, and 4 on the east branch of Ely Brook are used extensively for spring breeding by local populations of wood frogs (*Rana sylvatica*), green frogs (*Rana clamitans*), and red-spotted newts (*Notophthalmus viridescens*). No fish were observed in any of these ponds during multiple visits in the spring of 2007 and 2008.

The main stem of Ely Brook is devoid of fish due to the low pH and high metal content of its surface water. Benthic invertebrates are also essentially absent from this stretch.

Schoolhouse Brook below its confluence with Ely Brook supports degraded populations of cold-water fish species and benthic invertebrates all the way to the EBOR. The major fish species identified during past fisheries surveys in the impacted portion of this brook consisted of brook trout (*Salvelinus fontinalis*), blacknose dace (*Rhinichthys atralutus*), longnose dace (*Rhinichthys cataractae*), and slimy sculpin (*Cattus cognatus*).

The EBOR below the confluence with Ely Brook shows a similar fish species composition, except that brook trout are rare but Atlantic salmon (*Salmo salar*) are more common.

4.6 RISK MANAGEMENT GOALS AND OBJECTIVES

As defined by U.S. EPA (2001b), "a *risk management goal* is a general statement of the desired condition or direction of preference for the entity to be protected. It is often developed independently of the risk assessment process. [...], *management objectives*, while similar to management goals, differ in that they should be specific enough to use when developing assessment endpoints and measures."

The following risk management goal is proposed:

Maintain the quality of sediment, surface water, and food sources in order to support a "functioning ecosystem" for aquatic and terrestrial receptors inhabiting or using the waterways at or downstream from the Ely Copper Mine.

The management objectives that follow from this proposed management goal are as follows:

- Restore the quality of surface water and sediment in the waterways impacted by the historical
 operations of the Ely Copper Mine to the degree and quality that they can support viable and selfsustaining populations of benthic invertebrates, amphibians, and fish, and wildlife receptors that
 depend on them for food.
- Ensure that sources of contamination originating from historical operations of the Ely Copper
 Mine are controlled so that they are prevented from re-contaminating the aquatic habitats in the
 future.

4.7 SITE CONCEPTUAL MODEL

4.7.1 Contaminant fate and transport

The available information on the Site was reviewed to determine which fate and transport mechanisms might result in complete exposure pathways to aquatic receptors or to terrestrial receptors feeding on aquatic prey. The goal was to identify the major components of a complete exposure pathway, which consist of the following.

- Source of contamination,
- Release and transport mechanisms.
- Contact points and exposure media,
- Routes of entry, and
- Key receptors.

Each component is discussed below.

4.7.1.1 Sources of contamination

The following mine-related features are potential sources of contamination to the aquatic environments at and downstream from Ely Mine. These sources are listed from up-gradient (north) to down-gradient (south) (see also **Figure 4.1**).

Primary sources

(a) The Upper Mine Waste Piles (UMWPs)

Six individual waste rock piles are located against a ridge at the upper end of the Site, closest to the old mine shafts and adits. These piles, which are known collectively as the UMWPs, are essentially devoid of vegetation. Waste rock and low-grade ore was deposited in piles as the ore was removed from the underground mine which ran along the nearby ridge line. The materials making up the UMWPs range from fine-grained soil to boulder-sized waste rocks. The USGS reported Cu concentrations ranging between 2,050 and 5,660 mg/kg in composited surface soil samples collected from the six waste piles at this location (USGS, 2004). These piles represent a significant source of AMD.

(b) The artesian well

An artesian well is located just up-gradient from the Lower Mine Waste Piles (LMWPs). Groundwater wells up from this location year-round. Minerals and metals have been deposited around this well, creating a terrace-like appearance. The surface of this terrace is darkly stained.

Water from the artesian well flows into the north branch of Ely Brook.

(c) The Lower Mine Waste Piles

The LMWPs are located below the artesian well. The piles are traversed by the main access road which runs in a south-to-north direction. The east branch of Ely Brook transects this area from east to west and joins with the north branch just before its confluence with the main stem of Ely Brook. The LMWPs cover about 15 acres and consist of fine, orange-reddish soil devoid of vegetation. The piles have a flattened appearance and have been severely eroded by past surface runoff. The USGS reported Cu concentrations between 5,100 and 7,020 mg/kg in three composited surface soil samples collected from the LMWPs (USGS, 2004).

(d) The slag piles

The slag piles are located along the east bank of Schoolhouse Brook. They are bounded to the north by South Vershire Road. These piles, which cover 4.3 acres and are up to 10-12 ft thick, contain Cu-rich residual solid waste generated by the smelting activities that took place at the former smelter plant directly across South Vershire Road. The USGS reported a Cu concentration of 6,750 mg/kg in a composite sample collected from the slag piles (USGS, 2004). Leaching tests performed on these materials also indicated the potential for the release of Cu at concentrations two orders of magnitude above the EPA's ambient water quality criterion for this metal (USGS, 2004).

COPECs leaching out of the slag piles in response to rain or snowmelt are likely to enter Schoolhouse Brook, either directly as overland flow or via local groundwater recharge.

Secondary sources

The following mine-related features have been identified as secondary sources of contamination to the local aquatic environments at Ely Mine.

(e) The former floatation mill

The former floatation mill, built during World War 1, is located just north of the LMWPs. It covers a relatively small area of about 165 ft by 500 ft. The tailings, which were dumped next to the mill, cover an area of about 1,000 ft² to a depth of at least 3-4 ft. The whole area is covered by brownish-yellow soil and is mostly devoid of vegetation. The USGS reported a Cu concentration of 2,400 mg/kg in a composited surface soil sample collected from the footprint of the former mill (USGS, 2004). The Cu concentration in a composited soil sample collected from the surface of the tailings themselves equaled 2,240 mg/kg. However, the Cu concentration in a composite sample equaled 25,600 mg/kg in the black, un-oxidized part of the tailings pile 2.5 ft below surface (USGS, 2004).

The former floatation mill is located within 200 ft of both the north and east branch of Ely Brook. It is possible for some of the fine-grained surface tailings at this location to reach one or both of these branches by overland flow during periods of heavy rainfall.

(f) The roast bed complex

The roast bed complex is located along the eastern side of the access road and across from the LMWPs. It covers an area about 985 ft long and 200 ft wide (3.3 acres). This feature is lined by a massive, 600-ft long fieldstone retaining wall which runs alongside the access road. Historically, ore was "roasted" at this location to break down the ore material and drive off excess sulfur prior to smelting. The area supports sparse to minimal vegetation and is covered by a fine to gravelly yellow-orange soil. The USGS reported a Cu concentration of 2,040 mg/kg in a composited surface soil sample collected at this location (USGS, 2004).

A small, ephemeral tributary originates at the southern end of the roast bed complex and flows into the main stem of Ely Brook. It is possible for surface soil to erode from the roast beds and reach the unnamed tributary as overland flow during periods of heavy rainfall.

4.7.1.2 Release and transport mechanisms

Some of the materials present in the mine waste piles at the Site are rich in sulfide minerals (e.g., pyrrhotite, pyrite and chalcopyrite). These minerals react with snowmelt or rainwater and atmospheric oxygen over time. The oxidation process generates sulfuric acid, which causes metals such as Cu and Zn to dissolve out of the mine waste. This highly acidic and metal-rich AMD is toxic to aquatic receptors due to its low pH and high dissolved metal content.

The following release and transport mechanisms may potentially affect the concentration and spatial distribution of COPECs in the waterways at and down-gradient from the Site.

- Dissolution and leaching of COPECs from mine waste into groundwater at the Site,
- Migration of dissolved COPECs in groundwater to sediment and surface water in adjacent surface water bodies, and its attenuation by dilution/dispersion and sorption,
- Transport of COPECs adsorbed to soil particles via surface water runoff,
- Transport of dissolved COPECs in surface water runoff, and
- Trophic transfer of COPECs incorporated in aquatic food chains.

The potential for COPECs to be released from mine waste and transported from the sources at the Site to points of contact with aquatic receptors in the local waterways depends on their chemical speciation, concentration, presence of nearby surface water bodies, extent and duration of precipitation events, and spatial distribution within the mine waste. Surface water runoff and groundwater infiltration are particularly important transport mechanisms for soluble species of metals.

4.7.1.3 Contact point and exposure media

The on-Site ponds, main stem of Ely Brook, Schoolhouse Brook, and the EBOR represent the potential contact points evaluated in the BERA. The potential exposure media are as follows:

- Surface water
- Pore water
- Sediment
- Prey items (e.g., benthic invertebrates, aquatic insects, and fish)

4.7.1.4 Routes of entry

The main routes of entry for aquatic receptors, and terrestrial receptors feeding on aquatic prey,

are as follows:

- Direct contact with surface water and sediment via dermal and/or gill absorption (aquatic receptors only).
- Ingestion of surface water (aquatic receptors and terrestrial receptors).
- Ingestion of contaminated prey items (aquatic receptors and terrestrial receptors).

Scientific information from the literature, as well as data from direct toxicity tests and community surveys, were used to assess the potential ecological risks associated with direct contact and ingestion. The BERA evaluates the complete exposure pathways for these two routes of entry. **Exhibit 4.2** summarizes other exposure pathways which were not evaluated in the BERA.

Exhibit 4.2: Expo	Exhibit 4.2: Exposure pathways not quantitatively evaluated in the aquatic portion of the Ely Copper Mine BERA										
Receptors of Concern	Potential Exposure Pathway	Reason for not Evaluating Quantitatively									
Aquatic invertebrates and fish	Exposure to COPECs via food chain transfer.	Inadequate information for an independent quantitative evaluation. However, fish tissue residue data integrate all exposure pathways in fish.									
Birds and mammals feeding on aquatic prey	Exposure to COPECs via dermal absorption.	Fur and feathers limit direct dermal uptake of COPECs. Preening and grooming was not assumed to represent a significant exposure route to wildlife feeding on aquatic prey in Schoolhouse Brook and the EBOR.									
Birds and mammals feeding on aquatic prey	Exposure to COPECs via inhalation	It is assumed that mine-derived inorganics present in sediment do not represent an inhalation threat to wildlife receptors feeding in or over the waterways.									
Birds and mammals feeding on aquatic prey	Exposure to COPECs via incidental sediment ingestion	It is assumed that the coarse nature of much of the substrate in Schoolhouse Brook and the EBOR eliminates the incidental ingestion of sediment by wildlife receptors feeding in or over the waterways.									

4.7.2 Potential receptors and ecotoxicity

Aquatic receptors

Aquatic invertebrates and fish may live above, on, and/or within the substrate in the three streams affected by AMD runoff. In addition, early life stages of amphibians are present in the on-Site ponds on the east branch of Ely Brook during the spring breeding season.

Terrestrial wildlife receptors feeding on aquatic prey

The following terrestrial wildlife receptors may feed on aquatic prey present in one or more of the affected streams:

- Insectivorous birds and insectivorous mammals can feed on winged aquatic insects, such as adult stoneflies, mayflies, or caddis flies.
- Piscivorous mammals and piscivorous birds can feed on brook trout and other cold-water fish that live in Schoolhouse Brook and the EBOR.

Ecotoxicity

Acidity and metals have been identified as the two major chemical stressors in the aquatic habitats potentially affected by site releases.

Acidity/low pH

Sulfuric acid is released when water and oxygen interact with the sulfide-rich mine waste rock. Low pH is toxic to most aquatic receptors. Sensitive species of fish and aquatic invertebrates experience increased mortality at a pH around 6.0. Brook trout populations disappear from streams when pH drops to the low 5.0's for an extended period of time. The embryo-larval stages of some amphibian species are more resistant to acidity and thrive in *Sphagnum* bogs at pH's in the mid to low 4.0's.

Metals

High acidity solubilizes metals present in the mine waste materials, resulting in metals-enriched surface water run-off. Dissolved metals are of the highest concern because, unlike metals associated with the particulate fraction, they are bioavailable to exert direct toxicity to aquatic receptors, or to move up the aquatic food chain.

Both acidity and dissolved metals affect osmoregulation in aquatic organisms by changing the integrity of the cell junctions in the gill tissues. The cell junctions become "leaky" with increasing levels of H^{\dagger} (protons) or metals, thereby allowing blood electrolytes to diffuse out of the gill tissue, and water to diffuse into the bloodstream. Death results when blood electrolytes drop below a critical physiological threshold, which varies from species to species.

4.7.3 Ecosystems potentially at risk

The BERA focuses on aquatic habitats present at or down-gradient from the former Ely Copper Mine Site. The potentially impacted aquatic habitats at the Site consist of the main stem of Ely Brook, and the four on-site ponds on the east branch of Ely Brook. The east branch between the ponds and its confluence with the north branch of Ely Brook, and the network of drainage channels that form the north branch, are excluded from the BERA because they do not represent long-term, viable aquatic habitats.

The potentially impacted aquatic habitats down-gradient from the Site consist of about two miles of Schoolhouse Brook between Ely Brook and the EBOR, and the EBOR below its confluence with Schoolhouse Brook.

4.7.4 Exposure pathways

Routes of exposure are the means by which COPECs can be transferred from a contaminated medium to ecological receptors. The principal Receptors of Concern (ROCs) and routes of exposure evaluated in this BERA are as follows:

- Benthic invertebrates: direct contact with sediment and surface water, ingestion of sediment, and ingestion of biota.
- Water column invertebrates: direct contact with surface water and ingestion of biota.
- Fish: direct contact with sediment and surface water, ingestion of sediment and surface water, and ingestion of biota.
- Amphibians (embryo-larval life stages only): direct contact with sediment and surface water, and ingestion of sediment and biota.

- Insectivorous birds and mammals: ingestion of surface water and biota (winged aquatic insects).
- Piscivorous birds and mammals: ingestion of surface water and biota (benthic invertebrates and fish).

The BERA assumes that sediment ingestion by wildlife receptors is negligible due to the coarse nature of the sediment in Ely Brook, Schoolhouse Brook, and the EBOR. This approach was also used in the Elizabeth Copper Mine BERA (URS, 2006).

4.7.5 Site Conceptual Model

The SCM provides the foundation for performing a BERA. The SCM is formulated based on knowledge of sources, contaminants, complete exposure pathways, and ROCs. The model shows the movement of COPECs from the sources of contamination through the exposure media to the ROCs. **Figure 4.4** presents a simplified SCM for the Site.

The upper and lower mine waste piles at the Site represent the primary sources of contamination to the local water ways. Sulfuric acid is released when water and oxygen interact with the sulfide-rich mine material. This acid dissolves metals. Both enter Ely Brook (including several of the ponds on the east branch of Ely brook) as acidified and metal-enriched surface runoff, leachate, or groundwater (e.g., seeps). Mine waste has also been transported and deposited into Ely Brook itself where it serves as substrate. This material can serve as a secondary source contamination to the local waterways. The surface water in Ely Brook carries high loads of total and dissolved metals, and elevated acidity, into Schoolhouse Brook. A substantial dilution takes place as Schoolhouse Brook flows towards the EBOR.

The biota in the affected aquatic habitats become exposed to mine-derived COPECs by direct contact and/or ingestion. The COPEC concentrations are high enough to make the lower half of Ely Brook essentially devoid of aquatic life, and to significantly affect aquatic life in Schoolhouse Brook up to its confluence with the EBOR. Wildlife receptors along these waterways also have a potential to ingest harmful levels of COPECs by feeding on aquatic receptors (benthic invertebrates, aquatic insects, fish) or by drinking contaminated surface water.

4.8 <u>ASSESSMENT ENDPOINTS, RISK QUESTIONS, MEASUREMENT ENDPOINTS, AND WEIGHT</u> OF EVIDENCE

4.8.1 Introduction

Endpoints help quantify the risks to representative receptors that may be exposed to metals and low pH associated with the Site.

Assessment endpoints represent explicit expressions of the key ecological resources to be protected from harm. They generally reflect sensitive populations, communities, or trophic guilds. Four criteria for selecting the proposed assessment endpoints needed in the Ely Copper Mine BERA are listed below. The ecological resource should:

- have relevance,
- be susceptible to the stressors of concern,
- have biological, social, and/or economic value, and
- be relevant to the risk management goals for the site.

By carefully considering these selection criteria, risks identified to one or more of the assessment endpoints will influence the risk management decision process at the Site.

Measurement endpoints represent measurable ecological characteristics, quantified through laboratory or field experimentation, which can be related back to the valued ecological resources chosen as the assessment endpoints. Measurement endpoints are required because it is often not possible to directly quantify risk to an assessment endpoint. The measurement endpoints should represent the same exposure pathway(s) and mechanisms of toxicity as the assessment endpoints in order to be relevant and useful.

Risk questions establish a link between assessment endpoints and their predicted responses when exposed to COPECs. The risk questions should provide a basis to develop the study design and evaluate the results of the site investigation in the analysis phase and during risk characterization (USEPA, 1997).

4.8.2 Selecting representative assessment endpoint species or communities

It is neither practical nor possible to evaluate the potential for ecological risk to all of the individual parts of the local aquatic ecosystem affected by Site-related chemical stressors. Instead, key components are identified to select those species or groups most likely to experience exposure to the stressors.

4.8.2.1 Non-wildlife receptors

Benthic invertebrates

Benthic invertebrates form an integral link in all aquatic ecosystems. They play a key role in nutrient and energy transfers within those systems. They also process and assimilate organic material, feed on other invertebrates, and are themselves consumed by fish, birds, and mammals.

COPECs with the potential to bioaccumulate can be transferred from the sediment into the benthic invertebrate community and up the food chain, thereby harming higher-level receptors. Significant alterations in invertebrate communities could also impact the energy cycling at the base of the aquatic food chain.

The substrate in the on-site ponds, main stem of Ely Brook, Schoolhouse Brook, and the EBOR should be able to support a diverse benthic invertebrate community. Key invertebrates include snails, freshwater mussels, crayfish, and the aquatic life stages of numerous insect species (e.g., mayflies, stoneflies, caddisflies, dragonflies, etc.).

Water column invertebrates

The water column invertebrate community encompasses zooplankton (mostly crustaceans) commonly found in ponded water bodies. Key species include diving beetles, copepods, and cladocerans. These types of organisms play a role in energy and nutrient transfer to higher trophic levels and also represent a food resource for juvenile amphibians and some benthic invertebrates. The presence of site-derived chemicals in the surface water of the on-site ponds could result in direct mortality or decreased reproduction in water column invertebrates.

Fish

The three streams should be able to support a healthy fish community, consisting of cold water stream species, such as brook trout and dace. The aquatic environment should provide such a

community with a diverse food base, suitable feeding and spawning areas, refuges for juvenile fish, and other essential environmental services.

The presence of metals (and high acidity) in the surface water and sediment can impair the local fish community in two general ways: (1) mortality of sensitive early life stages exposed to dissolved metals and/or low pH in the water column, or (2) high metal concentrations in aquatic biota via food chain uptake which could affect reproduction and the long-term survival of the exposed fish.

Repeated visual observations have failed to show the presence of any fish in the on-site ponds. Fish are known to be absent from the main stem of Ely Brook, but are present throughout Schoolhouse Brook and the EBOR.

Amphibians

Amphibians are a key receptor group of concern. Amphibian populations are generally considered to be in broad decline in the U.S. due to habitat loss and environmental degradation. The local amphibian populations at the site extensively use the ponds on the east branch of Ely Brook for breeding in the spring. The conditions in those on-site ponds should be such that amphibian eggs and larvae can survive and develop normally in order to maintain the local amphibian populations.

4.8.2.2 Wildlife receptors

Several bird and mammal species can be expected to forage in the general vicinity of the site and would feed on aquatic prey at Schoolhouse Brook and the EBOR. The main stem of Ely Brook was considered too narrow, shallow, and/or enclosed by forest canopy to represent suitable feeding habitat for wildlife receptors. It also currently does not support aquatic life. The surface area of ponds 2 to 5 combined was too small to provide enough habitat to support insectivores (note: pond 1 was the largest of the five ponds; it was unimpacted and served as an on-Site reference habitat for the ponds). The following target wildlife receptors are evaluated in the BERA.

Tree Swallow (*Tacycineta bicolor*)

The tree swallow is a seasonal resident in northern New England and has been observed in the area around the Site. This bird feeds predominantly on flying insects which it captures in flight over terrestrial, wetland, and riparian areas. Tree swallows migrate south for the winter.

Belted Kingfisher (Ceryle alcyon)

The belted kingfisher is a seasonal resident in northern New England, even though it is unknown if it forages in the vicinity of the Site. This piscivorous bird is typically found along the edges of rivers, streams, lakes and ponds. The kingfisher requires shallow water (typically < 60 cm deep) which is free of vegetation and remains relatively clear in order to be able to spot its prey. It feeds predominantly on small fish (< 18 cm). These feeding habits place this receptor high in the food chain. The belted kingfisher migrates south for the winter.

Mink (Mustela vison)

The mink is a year-round resident in northern New England, which remains active even during the winter months. It is unknown if mink forage in the vicinity of the Site. This species is associated with aquatic habitats of all kinds, including ponds, lakes, streams, rivers, and wetlands. The mink is an opportunistic carnivore which feeds on a variety of food items, including small mammals and birds, fish, crustaceans, aquatic insects, and amphibians. These feeding habits place it at the top of the food chain.

Eastern small-footed bat (Myotis leibii)

The eastern small-footed bat is a year-round resident of the Site, living and possibly hibernating in the old mine shafts at the Site. It feeds exclusively on flying insects and has been observed in the vicinity of the Site.

4.8.3 Endpoint selection

4.8.3.1 Aquatic assessment endpoints and risk questions

The following assessment endpoints were used to evaluate the potential for ecological risks to the aquatic receptors, and wildlife receptors feeding on aquatic prey. A risk question is appended to each assessment endpoint.

It was assumed that by evaluating and protecting the assessment endpoints, all of the aquatic habitats, and the wildlife receptors feeding on them, would be protected as well.

- A stable and healthy benthic invertebrate community: Are the COPEC levels in sediment sufficiently high to cause biologically-significant changes or impair the function of the benthic invertebrate community in the four ponds and the three streams at and down-gradient from the Site?
- A stable and healthy water column invertebrate community: Are the dissolved COPEC levels
 in surface water sufficiently high to cause biologically-significant changes or impair the function of
 the water column invertebrate community in the four ponds at the Site?
- A stable and healthy fish community: Are the dissolved COPEC levels in surface water sufficiently high to cause biologically-significant changes or impair the function of the fish community in the three streams at and down-gradient from the Site?
- Stable and healthy amphibian populations: Are the dissolved COPEC levels in surface water sufficiently high to cause biologically-significant changes or impair the function of the amphibian populations in the four ponds at the Site?
- Stable and healthy insectivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous bird populations foraging in the vicinity of Schoolhouse Brook and the EBOR?
- Stable and healthy insectivorous mammal populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous mammal populations foraging in the vicinity of Schoolhouse Brook and the EBOR?
- Stable and healthy piscivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to impair piscivorous bird populations foraging in Schoolhouse Brook and the EBOR?
- Stable and healthy piscivorous mammal populations: Are the COPEC levels in surface water, sediment, and biota sufficiently high to impair piscivorous mammal populations foraging in Schoolhouse Brook and the EBOR?

4.8.3.2 Aquatic measurement endpoints

Assessment endpoint 1:

A stable and healthy benthic invertebrate community: Are the COPEC levels in sediment sufficiently high to cause biologically-significant changes or impair the function of the benthic invertebrate community in the four ponds and the three streams at and down-gradient from the Site?

Depending on the target habitat, the following six measurement endpoints were used to assess the potential impacts of COPECs to this receptor group:

- 1.A Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.
- 1.B Compare the dissolved COPEC levels in sediment pore water samples to acute and chronic surface water benchmarks.
- 1.C Estimate the bioavailability of divalent metals in sediment by comparing AVS to SEM.
- 1.D Measure survival in *H. azteca* and *C. tentans* exposed for 96 hours in the laboratory to sediment pore water samples.
- 1.E Measure survival and growth in the benthic invertebrate species *H. azteca* and *C. tentans* exposed in the laboratory to bulk sediment samples.
- 1.F Evaluate the structure and function of the benthic invertebrate community.

Assessment endpoint 2:

A stable and healthy water column invertebrate community: Are the levels of dissolved COPECs in surface water sufficiently high to cause biologically-significant changes or impair the function of the water column invertebrate community in the four ponds at the Site?

Two measurement endpoints were used to assess the potential impacts of COPECs to this receptor group:

- 2.A Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.
- 2.B Measure survival and reproduction in the water flea, *C. dubia*, exposed for 7 days in the laboratory to surface water samples.

Assessment endpoint 3:

A stable and healthy fish community: Are the levels of dissolved COPECs in surface water sufficiently high to cause biologically-significant changes or impair the function of the fish community in the three streams at and down-gradient from the Site?

Four measurement endpoints were used to assess the potential impacts of COPECs to this receptor group:

- 3.A Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.
- 3.B Measure survival and growth in juvenile fathead minnows (*Pimephales promelas*) exposed in the laboratory for seven days to surface water samples.
- 3.C Compare COPEC levels measured in whole fish to no effect and effect CBRs.
- 3.D Evaluate the structure and function of the fish community.

Assessment endpoint 4:

Stable and healthy amphibian populations: Are the levels of dissolved COPECs in surface water sufficiently high to cause biologically-significant changes or impair the function of the amphibian populations in the four ponds?

Three measurement endpoints were used to assess the potential impacts of COPECs to this receptor group:

- 4.A Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.
- 4.B Measure survival and growth in fathead minnow larvae (*Pimephales promelas*, used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples.
- 4.C Evaluate *in-situ* survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds.

Assessment endpoint 5:

Stable and healthy insectivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous bird populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

5.A Use sediment analytical data to estimate the body residues of COPECs in winged aquatic insects; use food chain modeling to calculate daily doses from the ingestion of surface water and winged aquatic insects, and compare these values to Toxicity Reference Values (TRVs).

Assessment endpoint 6:

Stable and healthy insectivorous mammal populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous mammal populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

6.A Use sediment analytical data to estimate the body residues of COPECs in winged aquatic insects; use food chain modeling to calculate daily doses from the ingestion of surface water and winged aquatic insects, and compare these values to TRVs.

Assessment endpoint 7:

Stable and healthy piscivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to impair piscivorous bird populations foraging in Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

7.A Use food chain modeling to calculate daily doses from the ingestion of surface water, benthic invertebrates, and fish, and compare these values to TRVs.

Assessment endpoint 8:

Stable and healthy piscivorous mammal populations: Are the COPEC levels in surface water, sediment, and biota sufficiently high to impair piscivorous mammal populations foraging in Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

8.A Use food chain modeling to calculate daily doses from the ingestion of surface water and fish, and compare these doses to TRVs.

Exhibit 4.3 summarizes which assessment endpoints were evaluated at each of the four aquatic EUs at the Site.

Exhibit 4.3: Summary of assessment endpoints, exposure units, and receptors of concern for the aquatic portion of the BERA											
Assessment Endpoint			Aquatic Ex	posure Units							
(viability and function)	Representative species	Ponds ^a	Main Stem Ely Brook	Schoolhouse Brook	EBOR⁵						
Benthic Invertebrate community	generic	√c	$\sqrt{}$	V	\checkmark						
Water Column Invertebrate community	generic	$\sqrt{}$	NA ^d	NA	NA						
Fish populations	generic	NA	$\sqrt{}$	V	\checkmark						
Amphibian populations	generic	\checkmark	NA	NA	NA						
Insectivorous birds	tree swallow	NA	NA	V	√						
Insectivorous mammals	small-footed bat	NA	NA	V	V						

Exhibit 4.3: Summary of assessment endpoints, exposure units, and receptors of concern for the aquatic portion of the BERA											
Piscivorous birds	belted kingfisher	NA	NA	V	V						
Piscivorous mammals	mink	NA	NA	V	V						

^a ponds 2 to 5 on the east branch of Ely Brook were considered individual EUs for evaluation in the BERA (pond 1 was a reference location)

4.8.4 Weight of evidence

The risk to the target receptor groups identified above was assessed using a WOE approach (Menzie et al., 1996). This method recognized that all measures of effect did not carry the same weight when it came to determining ecological risk. Some measures were quite qualitative (e.g., generic surface water or sediment benchmarks), whereas others were more quantitative (e.g., community surveys). Risk identified based on a qualitative measure of effect had more uncertainty associated with it than risk identified based on more quantitative measures of effect.

A relative weight was assigned to all of the measures of effect before those endpoints were used in risk characterization. Menzie et al. (1996) described ten attributes which, when summed, can help determine the relative weights of all of the measures of effect. **Attachment 4.32** summarizes the BERA endpoints and provides the WOE scoring for each measure of effect used in this BERA. These WOE scores were a key component of the risk integration step described in the risk characterization of the BERA.

^b EBOR = east branch of the Ompompanoosuc River

 $^{^{\}rm c}$ $\sqrt{}$ = the assessment endpoint/EU combination is evaluated in this BERA

^d NA = not applicable because receptor group is missing (fish in ponds and water column invertebrates plus amphibians in streams) or suitable habitat and/or food sources are unavailable (wildlife receptors at the ponds and Ely Brook)

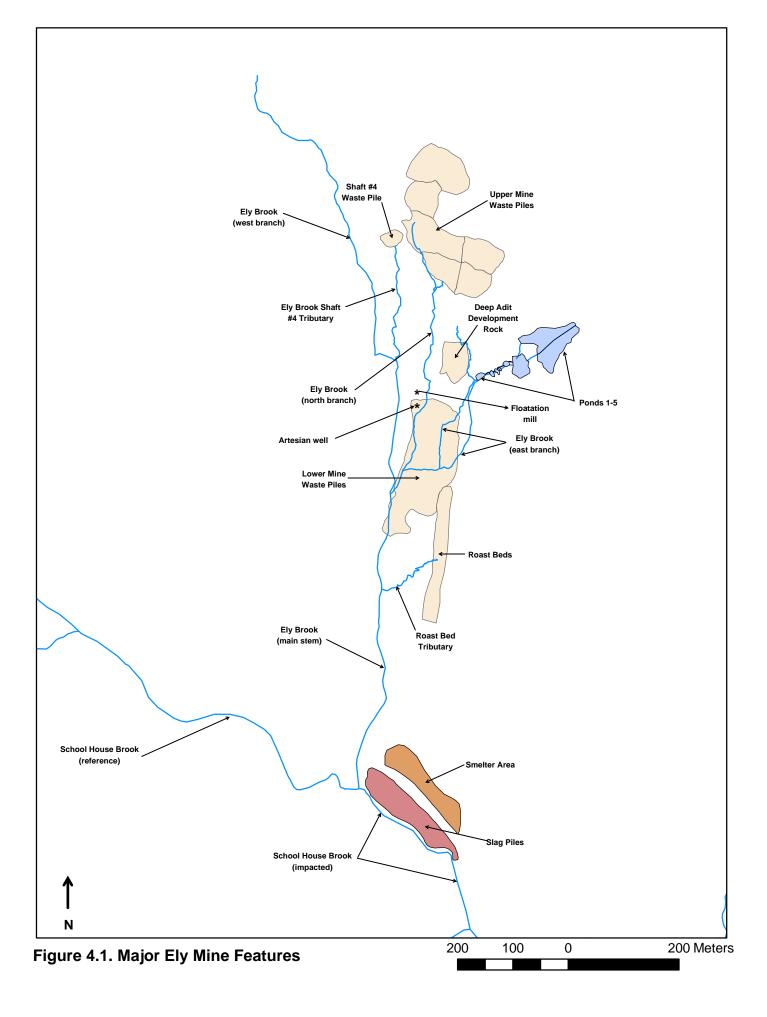


Figure 4.2: Location of the five ponds on the east branch of Ely Brook

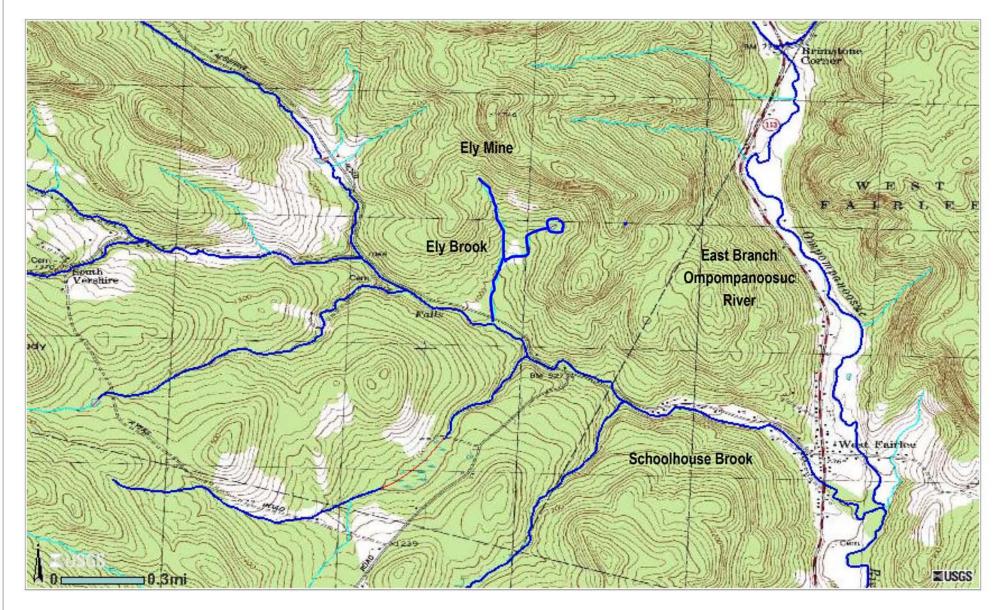
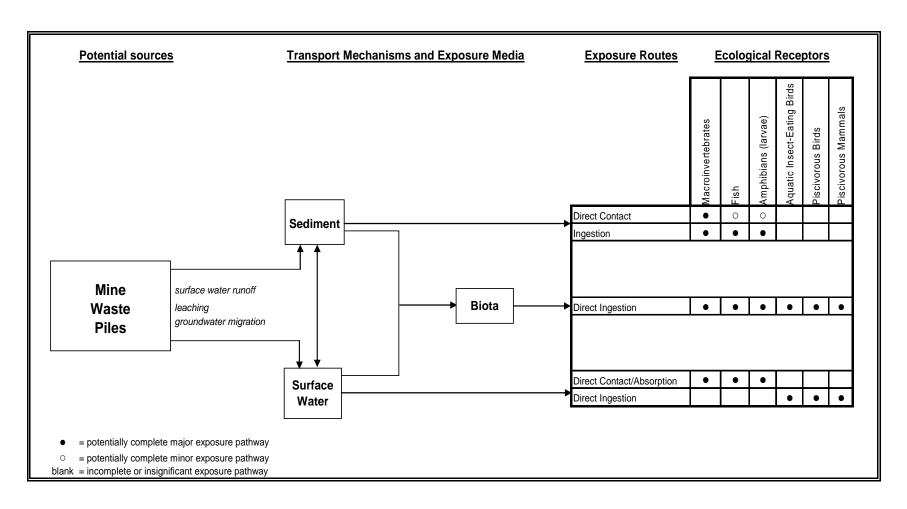



Figure 4.3. Schoolhouse Brook and the East Branch of the Ompompanoosuc River

Figure 4.4: Site conceptual model for aquatic habitats and receptors at the Ely Copper Mine

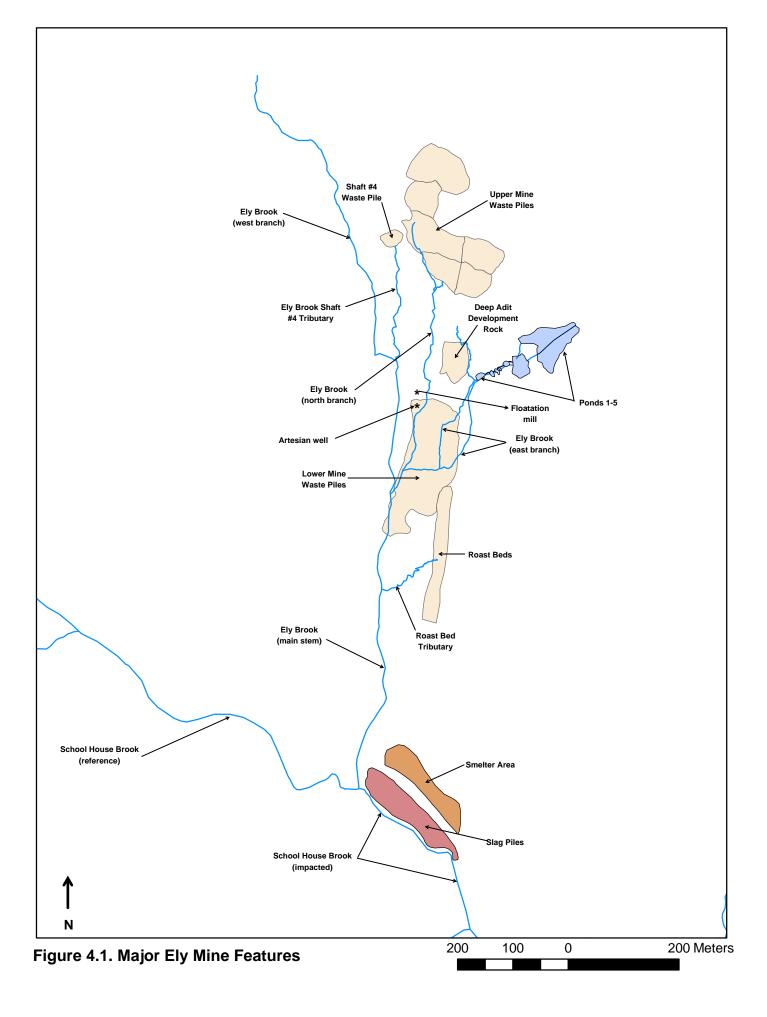


Figure 4.2: Location of the five ponds on the east branch of Ely Brook

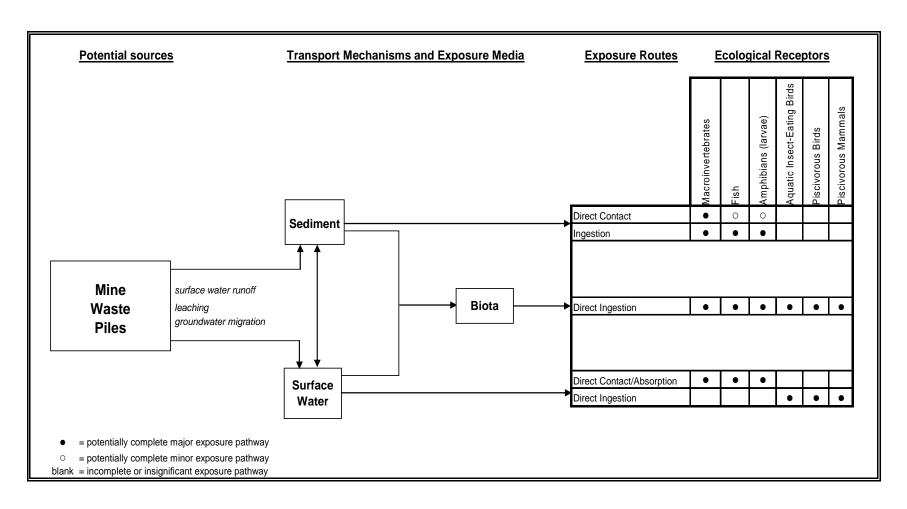


Figure 4.3. Schoolhouse Brook and the East Branch of the Ompompanoosuc River

Figure 4.4: Site conceptual model for aquatic habitats and receptors at the Ely Copper Mine

Selection of Sediment COPECs for Benthic Invertebrates in Pond 2

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Minimum		Maximum		Concentration Used for		Benchmark	Hazard		Reason
Chemicals	Detection		flag	l	flag		Benchmark	Source	Quotient	COPEC?	Code
Metals (mg/kg)											
Antimony	1/1	0.11		0.11		0.11	12	(2)	<1	No	(b)
Arsenic	0/1	1.0	energeneersterstersters	**************************************		1.0	9.79	(1)	<1	No	(b)
Barium	1/1	321	***************************************	321		321	0.7	(3)	459	Yes	(a)
Beryllium	1/1	1.8	***************************************	1.8		1.8	NA	and the second s	NA	Yes	(c)
Cadmium	1/1	1.3		1.3		· 1.3	0.99	(1)	1.3	Yes	(a)
Calcium	1/1	18900	A	18900		18900	NA		NA	No	(d)
Chromium	1/1	130	a page a more a manage a manag	130		130	43.4	(1)	3.0	Yes	(a)
Cobalt	1/1	24.0		24.0	1	24.0	50	(1)	<1	No	(b)
Copper	1/1	87.6	100,000,000	87.6		87.6	31.6	(1)	2.8	Yes	(a)
Iron	1/1	44800	- more	44800		44800	188400	(3)	<1	No	(b)
Lead	1/1	31.8		31.8		31.8	35.8	(1)	<1	No	(b)
Magnesium	1/1	13800	\$11000 personal distribution of the last o	13800		13800	NA	***************************************	NA	No	(d)
Manganese	1/1	769		769		769	630	(3)	1.2	Yes	(a)
Mercury	1/1	0.11	******************	0.11		0.11	0.174	(1)	<1	No	(b)
Molybdenum	1/1	2.6		2.6		2.6	NA		NA	Yes	(c)
Nickel	1/1	45.4		45.4		45.4	22.7	(1)	2.0	Yes	(a)
Potassium	1/1	10900		10900		10900	. NA		NA	· No	(d)
Selenium	1 / 1	1.1		1.1		1.1	0.29	(3)	3.8	Yes	(a)
Silver	0/1	1.0				1.0	0.5	(1)	2.0	Yes	(a)
Sodium	1/1	13000		13000		13000	NA		NA	No	(d)
Strontium	1/1	165		165		165	49.0	(3)	3.4	Yes	(a)
Tin	1/1	2.7		2.7		2.7	5.0	(3)	<1	No	(b)
Vanadium ·	1/1	148		148		148	50	. (3)	3.0	Yes	(a)
Zinc	1/1	131		131		131	121	(1)	1.1	Yes	(a)

mg/kg = milligrams per kilogram

COPEC - Chemical of Potential Ecological Concern

NA - Not Available

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario. Ontario Ministry of Environment and Energy.
- * Value represents the maximum non-detect reporting limit (RL), if chemical was not detected.
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Selection of Sediment COPECs for Benthic Invertebrates in Pond 3

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

·	Frequency of	Minimum		Maximum		Concentration Used for		Benchmark	Hazard		Reason
Parameters	Detection	Detect*	flag	Detect	flag	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals (mg/kg)	•										
Antimony	1/1	0.30		0.30		0.30	12	(2)	<1	No	(b)
Arsenic	1 / 1	3.0		3.0		3.0	9.79	(1)	<1	No	(b)
Barium	1/1	377		377		377	0.7	(3)	539	Yes	(a)
Beryllium	1/1	1.6		1.6		1.6	NA		NA	Yes	(c)
Cadmium	1/1	1.2		1.2		1.2	0.99	(1)	1.2	Yes	(a)
Calcium	1/1	14700		14700		14700	NA		NA	No	(d)
Chromium	1 / 1	85.0		85.0		85.0	43.4	(1)	2.0	Yes	(a)
Cobalt	1/1	30.9		30.9		30.9	50	(1)	<1	No	(b)
Copper	1/1	81.7		81.7		81.7	31.6	(1)	2.6	Yes	(a)
Iron	1/1	58400		58400		58400	188400	(3)	<1	No	(b)
Lead	1/1:	43.7		43.7		43.7	35.8	(1)	1.2	Yes	(a)
Magnesium	1/1	12200	. Inguiron of the little	12200		12200	NA	00000011000000010000000000000000000000	NA	No	(d)
Manganese	1 / 1	3130		3130		3130	630	(3)	5.0	Yes	(a)
Mercury	1/1	0.15		0.15		0.15	0.174	(1)	<1	No	(b)
Molybdenum .	1/1	2.2		2.2		2.2	NA		NA	Yes	(c)
Nickel	1/1	38.6		38.6		38.6	22.7	(1)	1.7	Yes	(a)
Potassium	1/1	8400		8400		8400	NA	11110000	NA	No	(d)
Selenium	1 / 1	1.4		1.4		1.4	0.29	(3)	4.8	Yes	(a)
Silver	0 / 1	1.0				1.0	0.5	(1)	2.0	Yes	(a)
Sodium	1/1	9100		9100		9100	NA		NA	No	(d)
Strontium	1/1	134		134		134	49.0	(3)	2.7	Yes	(a)
Tin .	1/1	2.5		2.5		2.5	5.0	(3)	<1	No	(b)
Vanadium	1/1	125		125		125	50	(3)	2.5	Yes	(a)
Zinc	1/1	127		127		127	121	(1)	1.0	Yes	(a)

mg/kg = milligrams per kilogram

COPEC - Chemical of Potential Ecological Concern

NA - Not Available

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- * Value represents the maximum non-detect reporting limit (RL), if chemical was not detected.
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Selection of Sediment COPECs for Benthic Invertebrates in Pond 4

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Minimum		Maximum		Concentration Used for		Benchmark	Hazard		Reason
Chemicals	Detection		flag		flag	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals (mg/kg)							4				
Aluminum	1/1	22000		22000		22000	25500	(3)	<1	No	(b)
Antimony	1/2	_ 0.31		0.31		0.31	12	(2)	<1	No	(b)
Arsenic	2/2	2.6		7.0		7.0	9.79	(1)	<1	No	(b)
Barium	2/2	100		337		337	0.7	(3)	481	Yes	(a)
Beryllium	1/2	1.6		1.6		1.6	. NA		NA	Yes	(c)
Cadmium	2/2	1.1	J	2.5		2.5	0.99	(1)	2.5	Yes	(a)
Calcium	2/2	2400		11100		11100	NA		NA	No	(d)
Chromium	2/2	60.0	J	67.0		67.0	43.4	(1)	1.5	Yes	(a)
Cobalt	2/2	29.2	(mildinimiterité des-ré	38.0		38.0	50	(1)	<1	No	(b)
Copper	2/2	380		400		400	31.6	(1)	12.7	Yes	(a)
Iron	2/2	30000		38800		38800	188400	(3)	<1	No	(b)
Lead	2/2	9.3	J	20.2		20.2	35.8	(1)	<1	No	(b)
Magnesium	2/2	10000	J	12500		12500	NA		NA	No	(d)
Manganese	2/2	920	J	2410	CONCRETE VALUE OF	2410	630	(3)	3.8	Yes	(a)
Mercury	2/2	0.04	J	0.09		0.09	0.174	(1)	<1.	No	(b)
Molybdenum	2/2	1.1	J	1.8	i asessorrans, ngrashiji	1.8	NA		NA	Yes	(c)
Nickel	2/2	56.0		61.1		61.1	22.7	(1)	2.7	Yes	(a)
Potassium	2/2	3100	***************************************	11100		11100	NA NA	parameter and any and any and a february and a febr	NA	No	(d)
Selenium	2/2	0.70		1.3	J	1.3	0.29	(3)	4.5	Yes	(a)
Silver	0/2	2.4				2.4	0.5	(1)	4.8	Yes	(a)
Sodium	1/2	6900		6900		6900	NA		NA	No	(d)
Strontium	1/1	91.9		91.9		91.9	49.0	(3)	1.9	Yes	(a)
Thallium	0/1	2.4				2.4	NA	an mina takinin han kan kan kan kan kan kan kan kan kan k	NA	Yes	(c)
Tin .	1/1	1.9		1.9		1.9	5.0	(3)	<1	No	(b)
Vanadium	2/2	58.0	J	93.0		93.0	50	(3)	1.9	Yes	(a)
Zinc	2/2	316	handari kanana kanana	320	J	320	121	(1)	2.6	Yes	(a)

mg/kg = milligrams per kilogram

COPEC - Chemical of Potential Ecological Concern

NA - Not available

- * Value represents the maximum non-detect reporting limit (RL), if chemical was not detected.
- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Selection of Sediment COPECs for Benthic Invertebrates in Pond 5

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					I I	Concentration	I			T T	
	Frequency of	Minimum		Maximum		Used for		Benchmark	Hazard		Reason
Chemicals	Detection		flag		flag		Benchmark	Source	Quotient	COPEC?	Code
Metals (mg/kg)			9		191						
Antimony	1/1	0.97		0.97		0.97	12	(2)	<1	No	(b)
Arsenic	1/1	3.0	***************************************	3.0	***************************************	3.0	9.79	(1)	<1	No	(b)
Barium	1/1	296	***************************************	296	***************************************	296	0.7	(3)	423	Yes	(a)
Beryllium	1/1	1.6	***************************************	1.6	*************	1.6	NA	and the second s	NA	Yes	(c)
Cadmium	1/1	4.0		4.0	*************	4.0	0.99	(1)	4.0	Yes	(a)
Calcium	1/1	9200	***************************************	9200	***************************************	9200	NA	cacacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	NA	No	(d)
Chromium	1 / 1	70.0	**********************	70.0		70.0	43.4	(1)	1.6	Yes	(a)
Cobalt	1/1	78.3	ARCHES ET COMMENSAGE AND	78.3	***************************************	78.3	50	(1)	1.6	Yes	(a)
Copper	1 / 1	3540		3540	***************************************	3540	31.6	(1)	112	Yes	(a)
Iron	1 / 1	49900	***************************************	49900	***************************************	49900	188400	(3)	<1	No	(b)
Lead	1 / 1	23.5	******************	23.5		23.5	35.8	(1)	<1	No	(b)
Magnesium	1 / 1	10200	ar consideration that we considered a	10200		10200	NA		NA	No	(d)
Manganese	1 / 1	1430		1430	d reconstruction of the second second	1430	630	(3)	2.3	Yes	(a)
Mercury	1/1	0.09		0.09		0.09	0.174	(1)	<1	No	(b)
Molybdenum	1 / 1	2.5	**************************************	2.5	Settler delegated delleg	2.5	NA		NA	Yes	(c)
Nickel	1/1	56.8	J	56.8	tick to a triangle of the triangle of triangle of the triangle of	56.8	22.7	(1)	2.5	Yes	(a)
Potassium	1/1	7900		7900	***************************************	7900	NA	Section to the second section of the second section of the second section sect	NA	No	(d)
Selenium	1 / 1	1.3 、	ecomo-interior (como	1.3		1.3	0.29	(3)	4.5	Yes	(a)
Silver	0 / 1	1.0				1.0	0.5	(1)	2.0	Yes	(a)
Sodium	1 / 1	8900		8900		8900	NA		NA	No	(d)
Strontium	1/1	76.5		76.5		76.5	49.0	(3)	1.6	Yes	(a)
Tin	1/1	1.6		1.6		1.6	5.0	(3)	<1	No	(b)
Vanadium	1 / 1	79.0		79.0	l ·	79.0	50	(3)	1.6	Yes	(a)
Zinc	1 / 1	507		507		507	121	(1)	4.2	Yes	(a)

mg/kg = milligrams per kilogram

COPEC - Chemical of Potential Ecological Concern

NA - Not Available

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory. ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- * Value represents the maximum non-detect reporting limit (RL), if chemical was not detected.
- (a) The maximum concentration exceeded its benchmark
- (b) The maximum concentration did not exceed its benchmark
- (c) No benchmark was available
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001)

Selection of Sediment COPECs for Benthic Invertebrates in the Main Stem of Ely Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency	v of	Minimum	***************************************	Maximum		Maximum	Concentration Used for		Benchmark	Hazard		Reason
Chemical	Detectio		Detect*	flag	Detect	flag	Location	Screening	Benchmark	ł I	Quotient	COPEC?	Code
Metals (mg/kg)					1				1	000.00	<u> </u>		<u> </u>
Aluminum	26 / 26	100%	1100		16000		EB-30M	16000	25500	(3)	<1	No	(b)
Antimony	4 / 30	13%	0.29	eal///occosit nobelitoria con	2.0		EB-90M	2.0	12	(2)	<1	No	(b)
Arsenic	22 / 31	71%	0.29	J	6.0	***************************************	EB-90M	6.0	9.79	(1)	<1	No	(b)
Barium	32 / 32	100%	18.0		236		EB-600M	236	0.7	(3)	337	Yes	(a)
							EB-535M					***************************************	······································
Beryllium	7 / 32	22%	0.30	J	2.0		EB-15M	2.0	NA		· NA	Yes	(c)
Cadmium	9 / 12		0.31	J	3.2	J	EB-30M	3.2	0.99	(1)	3.2	Yes	(a)
Calcium .	32 / 32	100%	54.0	***************************************	16200	hilasi ir saasaa aa	EB-15M	16200	NA		NA	No	(d)
Chromium	32 / 32	100%	7.2	J	83.0		EB-15M	83.0	43.4	(1)	1.9	Yes	(a)
Cobalt	32 / 32	100%	5.8	AND THE PERSONS	140		EB-30M	140	50	(1)	2.8	Yes	(a)
Copper	32 / 32	100%	310		6600		EB-405M	6600	31.6	(1)	209	Yes	(a)
Iron	32 / 32	100%	57000	organist of the second second	400000	***************************************	EB-210M	400000	188400	(3)	2.1	Yes	(a)
Lead	30 / 32	94%	8.7	J	174	(1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	EB-600M	174	35.8	(1)	4.9	Yes	(a)
Magnesium	32 / 32	100%	380	MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND	10500	************************	EB-600M	10500	NA NA	etoeneenvooreependermakermakermanneeri	NA	No	(d)
Manganese	32 / 32	100%	5.6		2080	***************************************	EB-90M	2080	630	(3)	3.3	Yes	(a)
Mercury	20 / 30	67%	0.01	J	0.12		EB-30M	0.12	0.174	(1)	<1	No	(b)
Molybdenum	30 / 30	100%	2.1	J	26.0		EB-535M	26.0	NA	nanananan ar anan Sanan Sanan Sanan ar an	NA	Ÿes	(c)
Nickel	31 / 32	97%	0.90	J	35.0		EB-30M	35.0	22.7	(1)	1.5	Yes	(a)
Potassium	30 / 30	100%	2200	***************************************	10500	***************************************	EB-600M	10500	NA	***************************************	NA	No	(d)
Selenium	30 / 30	100%	8.1	***************************************	44.0	***************************************	EB-30M	44.0	0.29	(3)	152	Yes	(a)
Silver	27 / 31	87%	0.47	J	13.0	J	EB-30M	13.0	0.5	(1)	26	Yes	(a)
Sodium	30 / 30	100%	72.0	J	16740	***************************************	EB-15M	16740	NA	et et tret et est verste verse van de verse de greg verse geze geze geze gregorie.	NA	No	(d)
Strontium	6/6		57.7	and the same of th	123		EB-15M	123	49.0	(3)	2.5	Yes	(a)
Thallium	7 / 26	27%	0.45	J	3.3	J	EB-530M	3.3	NA		NA	Yes	(c)
							EB-20M	**************************************					
							EB-535M						
Vanadium	32 / 32	100%	30.0	J	112		EB-90M	112	50	(3)	2.2	Yes	(a)
Zinc	32 / 32	100%	39.0		410	F*************************************	EB-30M	410	121	(1)	3.4	Yes	(a) ·

COPEC - Chemical of Potential Ecological Concern

NA - Not available

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory. ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Selection of Sediment COPECs for Benthic Invertebrates in School House Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

							ļ.	Concentration					
			Minimum		Maximum		Maximum	Used for		Benchmark	Hazard		Reason
Chemicals	Frequency of D	etection	Detect*	flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals (mg/kg)			<u></u>										
Aluminum	28 / 28	100%	3200		12000		SB-1360M	12000	25500	(3)	<1	No	(b)
Antimony	5 / 33	15%	0.65		2.4		SB-3260M	2.4	12	(2)	<1	No	(b)
Arsenic	31 / 34	91%	0.33	J	12.0		SB-3245M	12.0	9.79	(1)	1.2	Yes	(a)
Barium	34 / 34	100%	20.0		199		SB-140M	199	0.7	(3)	284	Yes	(a)
Beryllium	7 / 34	21%	0.10	J	2.0		SB-3245M	2.0	NA .		NA	Yes	(c)
Cadmium	11 / 34	32%	0.10		0.49	J	SB-20M	0.49	0.99	(1)	<1	No	(b)
Calcium	34 / 34	100%	2200		27250		SB-3245M	27250	NA		NA	No	(d)
Chromium	34 / 34	100%	7.1	J	85.0	,	SB-3245M	85.0	43.4	(1)	2.0	Yes	(a)
Cobalt	34 / 34	100%	5.2		93.0		SB-3020M	93.0	50	(1)	1.9	Yes	(a)
Copper	34 / 34	100%	44.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1390	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SB-3260M	1390	31.6	(1)	44	Yes	(a)
Iron	34 / 34	100%	8500	J	58800		SB-3260M	58800	188400	(3)	<1	No	(b)
Lead	31 / 34	91%	2.2	J	31.4	,	SB-140M	31.4	35.8	(1)	<1	No	(b)
Magnesium	34 / 34	100%	1500	J	7850	y decrease whereit	SB-3245M	7850	NA	to and the second se	NA	No	(d)
Manganese	34 / 34	100%	200	J	1400		SB-3245M	1400	630	(3)	2.2	Yes	(a)
Mercury	9 / 31	29%	0.01	J	0.02	J	SB-2900M	0.02	0.174	(1)	<1	No	(b)
Molybdenum	29 / 30	97%	0.16	J	7.3		SB-3260M	7.3	NA	The second se	NA	Yes	(c)
Nickel	34 / 34	100%	6.7		22.0		SB-3245M	22.0	22.7	(1)	<1	No	(b)
Potassium	31 / 31	100%	840		9200		SB-140M	9200	NA		NA	No	(d)
Selenium	29 / 33	88%	0.19	J	9.8		SB-3260M	9.8	0.29	(3)	34	Yes	(a)
Silver	11 / 34	32%	0.16	J	0.49	J	SB-1140M	0.49	0.5	(1)	<1	No	(b)
Sodium	31 / 31	100%	46.0	J	977	***************************************	SB-3245M	977	NA	and the contract and the contract to the contr	NA	No	(d)
Strontium	6/6	***	164		228		SB-3245M	228	49.0	(3)	4.7	Yes	(a)
Thallium	0 / 28	0%	50.0						NA	and the second s	NA	No	(e)
Vanadium	34 / 35	97%	9.2	J	62.0		SB-3260M	62.0	50	(3)	1.2	Yes	(a)
Zinc	34 / 34	100%	21.0	J	130	J	SB-20M	130	121	. (1)	1.1	Yes	(a)

mg/kg - milligrams per kilogram

COPEC - Chemical of Potential Ecological Concern

NA - Not Available

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory, ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario. Ontario Ministry of Environment and Energy.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).
- (e) The compound is present above its RL in less than 5% of the samples and the number of samples collected exceeds 20.

Selection of Sediment COPECs for Benthic Invertebrates in the EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	e	Minimum		Maximum		Maximum	Concentration Used for		Benchmark	Hazard		Reason
Chemicals	Frequency of Detection	Detect*	flag		flag	!	Screening	Benchmark	Source		COPEC?	Code
Metals (mg/kg)	Detection	Detect	Hay	Detect	may	Location	Screening	Dencimark	Source	Quonem	COPECI	Code
wetais (mg/kg)	1	i	1	I	·	OR-20200M					Г	
Aluminum	16 / 16	4600		14000		OR-23650M	14000	25500	(3)	<1	No	(b)
Antimony	2 / 17	0.22		1.8	J	OR-11850M	1.8	12	(2)	<1	No	(b)
Arsenic	10 / 17	0.47	J	5.0		OR-23200M	5.0	9.79	(1)	<1	No	(b)
Barium	17 / 17	23.0	ļ	195		OR-23200M	195	0.7	(3)	279	Yes	(a)
Beryllium	4 / 17	0.05	J	1.8		OR-23200M	1.8	NA		NA	Yes	(c)
Cadmium	2 / 17	0.10		0.18	J	OR-23630M	0.18	0.99	(1)	<1	No	(b)
Calcium	17 / 17	1900		13000	*************	OR-23200M	13000	NA	A STATE OF THE PARTY OF THE PAR	NA	No	(d)
Chromium	17 / 17	11.0	J	31.5		OR-11850M	31.5	43.4	(1)	<1	No	(b)
Cobalt	17 / 17	2.5	e de la companya de l	28.5		OR-8350M	28.5	50	(1)	<1	No	(b)
Copper	17 / 17	4.2		260	ļ	OR-23630M	. 260	31.6	(1)	8.2	Yes	(a)
Iron	17 / 17	5100	J	22800	T	OR-23200M	22800	188400	(3)	<1	No	(b)
Lead	14 / 17	0.63	J	11.0	1	OR-23630M	11.0	35.8	(1)	<1	No	(b)
Magnesium	17 / 17	1900	J	8000		OR-20200M	8000	NA		NA	No	(d)
Manganese	17 / 17	138		1120		OR-23200M	1120	630	(3)	1.8	Yes	(a)
Mercury	2 / 14	0.01	J	0.02	J	OR-23650M	0.02	0.174	(1)	<1	No	(b)
Molybdenum	8 / 10	0.11	J	1.1	J	OR-23630M	1.1	NA		NA	Yes	(c)
						OR-20200M					!	
Nickel	17 / 17	7.4		21.0	1	OR-23650M	21.0	22.7	(1)	<1	No	(b)
Potassium	14 / 14	830	J	8400		OR-23200M	8400	NA		NA	No	(d)
Selenium	3 / 17	0.30		0.81		OR-23630M	0.81	0.29	(3)	2.8	Yes	(a)
Silver	2 / 17	0.46	J	0.57	J	OR-8350M	0.57	0.5	(1)	1.1	Yes	(a)
Sodium	13 / 13	48.0	J	7600		OR-23200M	7600	NA		NA	No	(d)
Strontium	1 / 1	193		193		OR-23200M	193	49.0	(3)	3.9	Yes	(a)
Thallium	0 / 16	27.5					27.5	NA		NA	Yes	(c)
Vanadium	17 / 17	9.4	J	49.0		OR-23200M	49.0	50	(3)	<1	No	(b)
Zinc	17 / 17	13.0	J	125		OR-8350M	125	121	(1)	1.0	Yes	(a)

COPEC - Chemical of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

NA - Not Available

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- * If the chemical was not detected than this value represents the maximum non-detect reporting limit (RL)
- J = estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Summary of Sediment COPECs for Benthic Invertebrates

Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

		Po	nds				
COPEC	2	3	4	5	Ely Brook	School House Brook	The EBOR
Arsenic						V	
Barium	1	T 7	1		I 1		. 1
Beryllium	1	I √	1 1	V	l V	ter from the contract is now as a residence as the instant in a consequency in the contract in the contract and the interest to the contract and the c	V
Cadmium	1 7	T 1	1 1	V	T 7	tel footballe et et en een een een een een een een e	
Chromium	1 1	1 1	1 1	V	1 √	V	
Cobalt				V	I √		
Copper	1 1	1 1	T 7	T 7	 	The state of the s	7
Iron				***************************************	T		
Lead		1			V	**************************************	
Manganese	1 1	1 1	T 7	V	V	es de procuente en est de la cesa en est de la cesa en est en est en est de monte de la cesa de la	1
Molybdenum	1 1	T 1		V	T 7	an effective and the state of the state and the state a	1
Nickel	1 1	1	T		I		
Selenium	1 1	1 1	T 7	V	1 V		7
Silver	1 1	1 1	T V	V	1 V	and Broad Mark Andread and the American Andread and American Angle of the American Advanced Community (American) (America	7
Strontium	V	1 1	1	V	1		7
Thallium		***************************************	V		1		V
Vanadium	 	T 1	1	I	I V	**************************************	
Zinc		I √	V	V	V		· V

^{√ -} Chemical was selected as a COPEC

Selection of Pore Water COPECs for the Main Stem of Ely Book

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

							Concentration				T T	·
	Frequency of	Minimum		Maximum		Maximum	Used for		Benchmark	Hazard		Reason
Chemicals	Detection	Detect*	flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)			A		4							
Aluminum	6/6	4.8		456		EB-600M	456	87	(1)	5.2	Yes	(a)
Antimony	0/6	50.0					50.0	80	(4)	<1	No	(b)
Arsenic	0/6	200					200	150	(1)	1.3	Yes	(a)
Barium	6/6	14.0		86.0		EB-770M	86.0	220	(4)	<1	No	(b)
Beryllium	0/6	10.0		346.946			10.0	3.6	(4)	2.8	Yes	(a)
Cadmium	6/6	0.03		2.0		EB-770M	2.0	0.25	(1)	7.8	Yes	(a)
Calcium	6/6	14300		56100		EB-770M	56100	NA		NA	No	(d)
Chromium	0/6	10.0					10.0	11	(1)	<1	No	(b)
Cobalt	6/6	2.2		95.0		EB-770M	95.0	24	(4)	4.0	Yes	(a)
Copper	6/6	0.77		131		EB-770M	131	9.0	(1)	15	Yes	(a)
Iron	5/6	32.0		747		EB-770M	747	1000	(1)	<1	No	(b)
Lead	2/6	0.05		0.10		EB-770M	0.10	2.5	(1)	<1	No	(b)
Magnesium	6/6	2290		9290		EB-770M	9290	NA	***************************************	NA	No	(d)
Manganese	6/6	17.0		6590		EB-770M	6590	120	(6)	55	Yes	(a)
Mercury	0/2	5.0		800 MA			5.0	0.77	(1) .	6.5	Yes	(a)
Molybdenum	0/6	20.0					20.0	370	(6)	<1	No	(b)
Nickel	6/6	0.22		24.0		EB-770M	24.0	. 52	(1)	<1	No	(b)
Potassium	6/6	2130		7320		EB-770M	7320	NA		NA	No	(d)
Selenium	2/6	1.0		1.2		EB-770M	1.2	5.0	(1)	<1	No	(d)
Sodium	6/6	1400		3510		EB-770M	3510	NA NA		NA	No	(d)
Strontium	6/6	51.0		212		EB-770M	212	1500	(6)	<1	Yes	(b)
Thallium	0/6	0.10					0.10	40	(5)	<1	No	(d)
Vanadium	0/6	10.0					10.0	12	(4)	<1	No	(b)
Zinc	6/6	0.87		126		EB-770M	126	120	(1)	1.1	Yes	(a)

ug/L - micrograms per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA, 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5, Buchman, M.F. 1999, Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Attachment 4.10 Selection of Pore Water COPECs for School House Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

r	Frequency						Concentration				T		
	of	Minimum		Maximum		Maximum	Used for		Benchmark	Hazard]	Reason	
Chemicals	Detection		flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code	
Metals, Dissolved (ug/L)	Metals, Dissolved (ug/L)												
Aluminum	9/9	8.5		202		SB-2400M	202	87	(1)	2.3	Yes	(a)	
Antimony	4/9	0.30	***************************************	0.53		SB-2400M	0.53	80	(4)	<1	No	(b)	
Arsenic	0/9	200	M/milroscommono.	**************************************	(4/1	***************************************	200	150	(1)	1.3	Yes	(a)	
Barium	9/9	20.0		88.0		SB-140M	88.0	220	(4)	<1	No	(b)	
Beryllium	0/9	10.0					10.0	3.6	(4)	2.8	Yes	(a)	
Cadmium	9/9	0.02		0.30		SB-2400M	0.30	0.25	(1)	1.2	Yes	(a)	
Calcium	9/9	34600		93600		SB-1360M	93600	NA			No	(d)	
Chromium	0/9	10.0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.0	11	(1)	<1	No	(b)	
Cobalt	9/9	0.03		4.3		SB-1360M	4.3	24	(4)	<1	No	(b)	
Copper	9/9	0.76	***************************************	25.0		SB-1360M	25.0	9.0	(1)	2.8	Yes	(a)	
Iron	4/8	28.0	***************************************	213		SB-2400M	213	1000	(1)	<1	No	(b)	
						SB-1360M							
Lead	7/9	0.003		0.20		SB-140M	0.20	2.5	(1)	<1	No	(b)	
Magnesium	9/9	1950		6210	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SB-2400M	6210	NA			No	(d)	
Manganese	9/9	0.60		2030		SB-1360M	2030	120	(6)	17	Yes	(a)	
Mercury	0/3	5.0					5.0	0.77	(1)	6.5	No	(b)	
Molybdenum	0/9	20.0					20.0	370	(6)	<1	No	(b)	
Nickel	9/9	0.07		2.6		SB-140M	2.6	52	(1)	<1	No	(b)	
Potassium	2/2	#REF!		#REF!		SB-2400M	#REF!	NA		******	No	(d)	
Selenium	8/9	1.3		7.4		SB-1360M	7.4	5.0	(1)	1.5	Yes	(a)	
Sodium -	6/9	1000		4470		SB-1360M	4470	NA .			No	(d)	
Strontium	9/9	5.5		242		SB-1360M	242	1500	(6)	<1	No	(b)	
Thallium	7/9	184		470		SB-140M	470	40	(5)	12	Yes	(a)	
Vanadium	1/9	0.10		0.10		SB-2400M	0.10	12	(4)	<1	No	(b)	
Zinc	2/9	0.95		149		SB-1360M	149	120	(1)	1.2	Yes	(a)	

COPEC - Chemical of Potential Ecological Concern

ug/L - micrograms per liter

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- J estimated value
- * If sample was not detected, value represents the maximum non-detect reporting limit (RL)
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Attachment 4.11 Selection of Pore Water COPECs for the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

							Concentration				T I	
	Frequency of	Minimum	1 1	Maximum	I	Maximum	Used for		Benchmark	Hazard		Reason
Chemicals	Detection	Detect*	flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)												
Aluminum	3 / 3	11.6		49.0		OR-11850M	49.0	87	(1)	<1	No	(b)
Antimony	0/3	50.0					50.0	80	(4)	<1	No	(b)
Arsenic	0/3	200					200	150	(1)	1.3	Yes	(a)
Barium	3/3	23.0		85.0		OR-11850M	85.0	220	(4)	<1	No	(b)
Beryllium	0/3	10.0					10.0	3.6	(4)	2.8	Yes	(a)
Cadmium	3/3	0.002		0.06		OR-11800M	0.06	0.25	(1)	<1	No	(b)
Calcium	3/3	35800		86800		OR-11850M	86800	NA			No	(d)
Chromium	1/3	1.9		1.9		OR-11800M	1.9	11	(1)	<1	No .	(b)
Cobalt	3/3	0.47		3.08		OR-11850M	3.1	24	(4)	<1	No	(b)
Copper	3/3	0.26		4.5		OR-11800M	4.5	9.0	(1)	<1	No	(b)
Iron	2/3	23.0		184		OR-11800M	184	1000	(1)	<1	No	(b)
Lead	3/3	0.002		0.3		OR-11800M	0.30	2.5	(1)	<1	No l	(b)
Magnesium	3/3	1470		4040		OR-11850M	4040	NA ·			No	(d)
Manganese	3/3	364		3700		OR-11850M	3700	120	(6)	30.8	Yes	(a)
Mercury	0/1	5.0		no 100			5.0	0.77	(1)	6.5	Yes	(a)
Molybdenum	0/3	20.0					20.0	370	(6)	<1	No	(b)
Nickel	3/3	0.03		0.80		OR-11800M	0.80	52	(1)	<1	No	(b)
Potassium	3/3	3180		5460		OR-11850M	5460	NA			. No	. (d)
Selenium	0/3	1.0					1.0	5.0	(1)	<1	No	(b)
Sodium	3/3	9560		16800		OR-11850M	16800	NA			No	(d)
Strontium	3/3	165		399		OR-11850M	399	1500	(6)	<1	No	(b)
Thallium	0/2	0.10					0.10	40	(5)	<1	No	(b)
Vanadium	1/3	1.0		1.0		OR-11850M	1.0	12	(4)	<1	No	(b)
Zinc	3/3	0.08		2.9		OR-11800M	2.9	120	(1)	<1	No	(b)

ug/L - microgram per liter

COPEC - Chemical of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Attachment 4.12 Summary of Pore Water COPECs Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

COPEC	Ely Brook	School House Brook	The EBOR
Aluminum	√	\	
Arsenic	√	. 🗸	V
Beryllium	√	V	Ŋ
Cadmium	V	V	
Cobalt	√		•
Copper	1	A	
Manganese	√	V	7
Mercury	√		V
Selenium		√	·
Strontium	√ √		-
Thallium		V	
Zinc	 	√ '	

^{√ -} Chemical was selected as a COPEC

Attachment 4.13 Selection of Surface Water COPECs for Pond 2 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

		N		84		Concentration		D L			D
Q1	Frequency of	Minimum		Maximum		Used for		Benchmark	Hazard	000500	Reason
Chemicals	Detection	Detect*	flag	Detect	flag	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)	T									r	
Aluminum	6/6	4.5	******************	12.0		12.0	87	(1)	<1	No	(b)
Antimony	3/6	0.42		1.1		1.1	80	(4)	<1	No	(b)
Arsenic	1/6	1.0		1.0		1.0	150	(1)	<1	No	(b)
Barium	6/6	14.0		31.0		31.0	220	(4)	<1	No	(b)
Beryllium	0/6	10.0				10.0	3.6	(4)	2.8	Yes	(a)
Cadmium	2/6	0.06		0.15		0.15	0.25	(1)	<1	No	(b)
Calcium	6/6	4500		13600		13600	NA		NA	No	(d)
Chromium	1/6	6.6		6.6		6.6	11	(1)	<1	No	(b)
Cobalt	6/6	0.02		0.66		0.66	24	(4)	<1	No	(b)
Copper	6/6	1.5		41.8		41.8	9.0	(1)	4.6	Yes	(a)
Iron	6/6	41		560		560	1000	(1)	<1	No	(b)
Lead	3 / 6	0.47		0.64		0.64	2.5	(1)	<1	No	(b)
Magnesium	6/6	740		1700		1700	NA		NA	No	(d)
Manganese	6/6	20.0		1400		1400	120	(6)	11.7	Yes	(a)
Molybdenum	5 / 6	0.10		1.0		1.0	370	(6)	. <1	No	(b)
Nickel	5/6	0.58	***************************************	2.41		2.4	52	(1)	<1	No	(b)
Potassium	6/6	1100		2100		2100	NA		NA	No	(d)
Selenium	1/6	0.50		0.50		0.50	5.0	(1)	<1	No	(b)
Silver	3/6	0.15	4500 000,000,000,000	0.49		0.49	0.32	(1)	1.5	Yes	(a)
Sodium	6/6	920		1600		1600	NA		NA	No	(d)
Strontium	6/6	18.0		57.0		57.0	1500	(6)	<1	No	(b)
Thallium	0/6	0.10	***************************************			0.10	40	(5)	<1	No	(b)
Vanadium	5/6	0.10		0.70		0.70	12	(4)	<1	No	(b)
Zinc	6/6	5.5	1	171		171	120	(1)	1.4	Yes	(a)

ug/L = micrograms per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) The maximum concentration exceeded its benchmark
- (b) The maximum concentration did not exceed its benchmark
- (c) No benchmark was available
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001)

Attachment 4.14 Selection of Surface Water COPECs for Pond 3 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

						Concentration					
	Frequency of	Minimum		Maximum		Used for		Benchmark	Hazard		Reason
Parameters	Detection	Detect*	flag	Detect	flag	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)											
Aluminum	1/1	6.2		6.2		6.2	87	. (1)	<1	No	(b)
Antimony	1/1	0.62		0.62	-7-00	0.62	80	(4)	<1	No	(b)
Arsenic	0/1	200				200	150	(1)	1.3	Yes	(a)
Barium	1/1	13.0		13.0		13.0	220	(4)	<1	No	(b)
Beryllium	0/1	10.0				10.0	3.6	(4)	2.8	Yes	(a)
Cadmium	0/1	13.0				13.0	0.25	(1)	52	Yes	(a)
Calcium	1/1	9060		9060		9060	NA		NA	No	(d)
Chromium	0 / 1	28.8		'.		28.8	11	(1)	2.6	Yes	(a)
Cobalt	1 / 1	0.23		0.23		0.23	24	(4)	.<1	No	(b)
Copper	1/1	1.7		1.7		1.7	9.0	(1)	<1	No	(b)
Iron	1/1	253		253		253	1000	(1)	<1	No	(b)
Lead	1 / 1	0.52		0.52		0.52	2.5	(1)	<1	No	(b)
Magnesium	1/1	1170		1170		1170	NA		NA	No	(d)
Manganese	1/1	444		444		444	120	(6)	3.7	Yes	(a)
Molybdenum	0/1	20.0				20.0	370	(6)	<1	No	(b)
Nickel	1/1	1.8		1.8		1.8	52	(1)	<1	No	(b)
Potassium	1/1	1780		1780		1780	NA		NA	No	(d)
Selenium	0/1	1.0				1.0	5.0	(1)	<1	No	(b)
Silver	1/1	46.2		46.2		46.2	0.32	(1)	144	Yes	(a)
Sodium	1/1	1310		1310		1310	NA		NA	No	(d)
Strontium	1/1	35.0	Antonio di Carati	35.0		35	1500	(6)	<1	No	(b)
Thallium	0/1	0.10				0.10	40	(5)	<1	No	(b)
Vanadium	0 / 1	10.0		*****		10.0	12	(4)	<1	No	(b)
Zinc	1/1	7.2		7.2		7.2	120	(1)	<1	No	(b)

ug/L = micrograms per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038, January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Attachment 4.15 Selection of Surface Water COPECs for Pond 4 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

						Concentration					
	Frequency of	Minimum		Maximum		Used for		Benchmark	Hazard		Reason
Chemicals	Detection	Detect*	flag	Detect	flag	Screening	Benchmark	Source	Quotient	COPEC?	Code
Aluminum	2/8	5.5		41.0	J	41.0	87	(1)	<1	No	(b)
Antimony	0/8	50.0		nder state of the confirmation of the confirma		50.0	80	(4)	<1	No	(b)
Arsenic	0/8	200		## 3## 	***************************************	200	150	(1)	1.3	Yes	(a)
Barium	2/8	10.4	************	19.0		19.0	220	(4)	<1	No	(b)
Beryllium	0/9	10.0		***	3711107 (61,110,110,110	10.0	3.6	(4)	2.8	Yes	(a)
Cadmium	1 / 10	0.19		0.19		0.19	0.25	(1)	<1	No	(b)
Calcium	10 / 10	5700		9880		9880	· NA		NA	No	(d)
Chromium	1 / 10	0.19	J	0.19	J	0.19	11	(1)	<1	No	(b)
Cobalt	4 / 10	0.27	J	1.7		1.7	24	(4)	<1	No	(b)
Copper	8 / 10	3.7		64.0	20,000,000,000	64.0	9.0	· (1)	7.1	Yes	(a)
Iron	10 / 10	83.0		330		330	· 1000	(1)	<1	No	(b)
Lead	2 / 10	0.07	J	0.46		0.46	2.5	(1)	<1	No	(b)
Magnesium	10 / 10	820	and a line of the second	1400		1400	NA	ennonne en	NA	No	(d)
Manganese	10 / 10	31.0		212		212	120	(6)	1.8	Yes	(a)
Molybdenum	0/4	20.0				20.0	370	(6)	<1	No	(b)
Nickel	4 / 10	0.43	J	5.3		5.3	52	(1)	<1	No	(b)
Potassium	8 / 8	1300	and Confidence of the	2150		2150	NA	and the control of the Architectual Andrews of the September 1 and	NA	No	(d)
Selenium	0 / 10	45.0				45.0	5.0	(1)	9.0	Yes	(a)
Silver	0 / 10	218				218	0.32	(1)	682	Yes	(a)
Sodium	8/8	890		1320		1320	NA		NA	No	(d)
Strontium	2/2	35.0		39.0		39.0	1500	(6)	· <1	No	(b)
Thallium	0 / 10	45.0				45.0	40	(5)	1.1	Yes	(a)
Vanadium	1 / 10	0.24	J	0.24	J	0.24	12	(4)	<1	No.	(b)
Zinc	8 / 10	6.8		186		186	120	(1)	1.5	Yes	(a)

ug/L = microgram per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

^{* -} If sample was not detected, value represents maximum non-detect reporting limit (RL)

Attachment 4.16 Selection of Surface Water COPECs for Pond 5 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

1000 LS 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						Concentration					
	Frequency of	Minimum	<i>-</i> .	Maximum	<u>.</u>	Used for	_ , ,	Benchmark	Hazard		Reason
Chemicals	Detection	Detect*	flag	Detect	flag	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)									·	·····	
Aluminum	1/4	10.1	~~~	10.1	aleielei teritaniaali	10.1	87	(1)	<1	No	(b)
Antimony	0/4	50.0	in part, glas min pri de design,			50.0	80	(4)	<1	No	(b)
Arsenic	0/4	200				200	150	(1)	1.3	Yes	´(a)
Barium	1 / 4	14.0		14.0		14.0	220	(4)	<1	No	(b)
Beryllium	0/4	10.0				10.0	3.6	(4)	2.8	Yes	(a)
Cadmium	1/4	1.9		1.9		1.9	0.25	(1)	7.7	Yes	(a)
Calcium	4 / 4	7500		13000		13000	NA		NA	No	(d)
Chromium	0/4	70.6				70.6	11	(1)	6.4	Yes	(a)
Cobalt	1/4	24.0		24.0		24.0	. 24	(4)	1.0	Yes	(b)
Copper	4 / 4	240		670		670	9.0	(1)	74.4	Yes	(a)
Iron	0/4	50.0				50.0	1000	(1)	<1	No	(b)
Lead	0/4	149				149	2.5	(1)	59.4	Yes	(a)
Magnesium	4 / 4	1300	***************************************	2440		2440	NA		NA	No	(d)
Manganese	4 / 4	90.0		425		425	120	(6)	3.5	Yes	(a)
Molybdenum	0 / 1	20.0				20.0	370	(6)	<1	No	(b)
Nickel	1 / 4	15.9		15.9		15.9	52	(1)	<1	No	(b)
Potassium	4/4	1500		2130		2130	NA		NA	No	(d)
Selenium	0 / 4	22.0				22.0	5.0	(1)	4.4	Yes	(a)
Silver	0 / 4	127				· 127.3	0.32	(1)	397.9	Yes	(a)
Sodium	4/4	980		1410		1410	NA .		NA	No	(d)
Strontium	1/1	44.0		44.0		44.0	1500	(6)	<1	No	(b)
Thallium	0 / 4	45.0				45.0	40	(5)	1.1	Yes	(a)
Vanadium	0/4	11.0				11.0	12	(4)	<1	No	(b)
Zinc	4/4	224		376		376	120	(1)	3.1	Yes	(a)

ug/L - micrograms per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) The maximum concentration exceeded its benchmark
- (b) The maximum concentration did not exceed its benchmark
- (c) No benchmark was available
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001)

Selection Surface Water COPECs for the Main Stem of Ely Book

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

·				Ì				Concentration					
	Frequency		Minimum		Maximum		Maximum	Used for		Benchmark	Hazard		Reason
Chemicals	Detection	1	Detect*	flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)													
Aluminum	34 / 34	100%	22.0		34000		EB-465M	34000	87	(1)	391	Yes.	(a)
Antimony	9 / 34	26%	0.02		0.28		EB-465M	0.28	80	(4)	<1	No	(b)
Arsenic	5 / 34	15%	0.08	J	1.9		EB-465M	1.9	150	(1)	<1	No	(b)
Barium	34 / 34	100%	6.4		40.0		EB-15M	40.0	220	(4)	<1	No	(b)
Beryllium	27 / 34	79%	0.05		1.8		EB-465M	1.8	3.6	(4)	<1	No	(b)
Cadmium	33 / 34	97%	0.09		8.7		EB-15M	8.7	0.25	(1)	35 .	Yes	(a)
Calcium	35 / 35	100%	7600		65000		EB-465M	65000	NA		NA:	No	(d)
Chromium	30 / 35	86%	0.11	J	15.1		EB-465M	15.1	11	(1)	1	Yes	(a)
Cobalt	35 / 35	100%	1.7		664		EB-465M	664	24	(4)	28	Yes	(a)
Copper	35 / 35	100%	12.6		6628		EB-15M	6628	9.0	(1)	736	Yes	(a)
Iron	32 / 35	91%	42.0		74600		EB-465M	74600	1000	(1)	75	Yes	(a)
Lead	21 / 33	64%	0.10		1.2		EB-90M	1.2	2.5	(1)	<1	No	(b)
Magnesium	35 / 35	100%	1000		30000		EB-465M	30000	NA		NA	No	(d)
Manganese	35 / 35	100%	20.0		3100		EB-465M	3100	120	(6)	26	Yes	(a)
Mercury	1 / 18		0.16		0.16		EB-90M	0.16	0.77	(1)	<1	No	(b)
Molybdenum	16 / 31	52%	0.03		1.8		EB-465M	1.8	370	(6)	<1	No	(b)
Nickel	35 / 35	100%	0.72		67.9		EB-465M	67.9	52	(1)	1	Yes	(a)
Potassium	33 / 33	100%	1300	J	5920	J	EB-515M	5920	NA		NA	No	(d)
Selenium	17 / 35	49%	0.20		1.0		EB-440M	1.0	5.0	(1)	<1	No	(b)
Silver	7 / 35	20%	0.004		0.69		EB-465M	0.69	0.32	(1)	2	Yes	(a)
Sodium	32 / 32	100%	720	J	11800		EB-15M	11800	NA		· NA	No	(d)
Strontium	30 / 30	100%	30.0		177		EB-465M	177	1500	(6)	<1	No	· (b)
Thallium	8 / 35	23%	0.04	J	0.11		EB-465M	0.11	40	(5)	<1	No	(b)
Vanadium ,	17 / 35	49%	0.06	J	3.0		EB-465M	3.0	12	(4)	<1	No	(b)
Zinc	34 / 34	100%	16.9		1213		EB-465M	1213	120	(1)	10	Yes	(a)

ug/L - micrograms per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).

Selection of Surface Water COPECs for School House Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		,										
							Concentration	-				
Frequenc	y of	Minimum				Maximum	Used for		Benchmark	Hazard	1	Reason
Detection	on	Detect*	flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code
	100%	4.6		180		SB-3250M	180	87	(1)	2.1	Yes	(a)
11 / 36	31%	0.02		1.7		SB-540M	1.7	80	(4)	<1	No	(b)
3 / 36	8%	0.09	J	0.11	J	SB-3250M	0.11	150	(1)	<1	No	(b)
36 / 36	100%	9.1		325		SB-1140M	325	220	(4)	1.5	Yes	(a)
0 / 36	0%	10.0		-			10.0	3.6		2.8	No	(e)
24 / 44	55%	0.02	berton reporter ages	0.82	ergany nisona spane/1661	SB-2940M	0.82	0.25		3.3	Yes	(a)
44 / 44	100%	7000	- Section of the sect	48200	*********	SB-2940M	48200	NA	and the second s	NA	No	(d)
9 / 44	20%	0.11	J	0.69	J	SB-3250M	0.69	11	(1)	<1	No	(b)
40 / 44	91%	0.03	posterior de la company	16.0	*******	SB-2940M	16.0	24		<1	No	(b)
43 / 44	98%	5.68	dell'anterior de merconi	203	000000000000000000000000000000000000000	SB-2940M	203	9.0		22.5	Yes	(a)
41 / 44	93%	13.0	And to see the second s	210	a garage and a sign of an extra and an extra	SB-3250M	210	1000		<1	No	(b)
7 / 42	17%	0.07		1.3		SB-20M	1.3	2.5		<1	No	(b)
44 / 44	100%	740		2700		SB-2940M	2700	NA		NA	No	(d)
44 / 44	100%	1.1		62.0		SB-2940M	62.0	120	(6)	<1	No	(b)
3 / 20		0.10	1	0.17		SB-3100M	0.17	0.77		<1	No	(b)
16 / 37	43%	0.05		0.40		SB-540M	0.40	370	(6)	<1	No	(b)
39 / 44	89%	0.19		4.4		SB-2940M	4.4	52		<1	No	(b)
35 / 37	95%	630	***************************************	3800	#gu-coccococcogue*****	SB-2940M	3800	NA		NA	No	(d)
	was now free and a feet of the second of the second		l			SB-2940M			***************************************	***************************************	»	manner of the state of the stat
7 / 45	16%	0.20		0.50		SB-3125M	0.50	5.0	(1)	<1	No	(b)
2 / 43	4.7%	0.01	1	0.04		SB-540M	0.04	0.32		<1	No	(b), (e)
32 / 32	100%	970	1	12000		SB-540M	12000	NA	and the second second second second second second	NA	No	(d)
29 / 29	100%	49.0	1	277		SB-2940M	277	1500	(6)	<1	No	(b)
0 / 44	0%	25.0				***************************************	25.0	40		<1	No	(b), (e)
12 / 44	27%	0.10	J	0.30		SB-540M	0.30	12		<1	No	(b)
38 / 38	100%	0.95	***************************************	211	1	SB-2940M	211	120	(1)	1.8	Yes	(a)
	36 / 36 11 / 36 3 / 36 36 / 36 0 / 36 24 / 44 44 / 44 9 / 44 40 / 44 41 / 44 7 / 42 44 / 44 3 / 20 16 / 37 39 / 44 35 / 37 7 / 45 2 / 43 32 / 32 29 / 29 0 / 44 12 / 44	11 / 36	Detection Detect* 36 / 36 100% 4.6 11 / 36 31% 0.02 3 / 36 8% 0.09 36 / 36 100% 9.1 0 / 36 0% 10.0 24 / 44 55% 0.02 44 / 44 100% 7000 9 / 44 20% 0.11 40 / 44 91% 0.03 43 / 44 98% 5.68 41 / 44 93% 13.0 7 / 42 17% 0.07 44 / 44 100% 740 44 / 44 100% 740 44 / 44 100% 1.1 3 / 20 0.10 16 / 37 43% 0.05 39 / 44 89% 0.19 35 / 37 95% 630 7 / 45 16% 0.20 2 / 43 4.7% 0.01 32 / 32 100% 970 29 / 29 100%	Detection Detect* flag 36 / 36 100% 4.6 11 / 36 31% 0.02 3 / 36 8% 0.09 J 36 / 36 100% 9.1 0 0 / 36 0% 10.0 24 / 44 4 / 44 55% 0.02 44 / 44 4 / 44 100% 7000 9 / 44 4 / 44 91% 0.03 43 / 44 98% 4 / 44 93% 13.0 7 / 42 17% 0.07 44 / 44 100% 740 44 / 44 100% 740 44 / 44 100% 1.1 3 / 20 0.10 16 / 37 43% 0.05 39 / 44 89% 0.19 35 / 37 95% 630 630 7 / 45 16% 0.20 2 / 43 4.7% 0.01 32 / 32 100% 970 29 / 29 100% 49.0 0 / 44	Detection Detect* flag Detect 36 / 36 100% 4.6 180 11 / 36 31% 0.02 1.7 3 / 36 8% 0.09 J 0.11 36 / 36 100% 9.1 325 0 / 36 0% 10.0 24 / 44 55% 0.02 0.82 44 / 44 100% 7000 48200 9 / 44 20% 0.11 J 0.69 40 / 44 91% 0.03 16.0 16.0 43 / 44 98% 5.68 203 210 7 / 42 17% 0.07 1.3 210 7 / 42 17% 0.07 1.3 2700 44 / 44 100% 740 2700 44 / 44 100% 7.40 2700 44 / 44 100% 1.1 62.0 3 / 20 0.10 0.17 16 / 37 43% 0.05 </td <td>Detection Detect* flag Detect flag 36 / 36 100% 4.6 180 1.7 3.7</td> <td>Detection Detect* flag Detect flag Location 36 / 36 100% 4.6 180 SB-3250M 11 / 36 31% 0.02 1.7 SB-540M 3 / 36 8% 0.09 J 0.11 J SB-3250M 36 / 36 100% 9.1 325 SB-1140M 0 / 36 0% 10.0 24 / 44 55% 0.02 0.82 SB-2940M 44 / 44 100% 7000 48200 SB-2940M 9 / 44 20% 0.11 J 0.69 J SB-3250M 40 / 44 91% 0.03 16.0 SB-2940M 43 / 44 98% 5.68 203 SB-2940M 41 / 44 93% 13.0 210 SB-3250M 7 / 42 17% 0.07 1.3 SB-2940M 44 / 44 100% 740 2700 SB-2940M 3 / 20 0.</td> <td>Frequency of Detection Minimum Detect* Maximum Detect Maximum Hag Maximum Location Used for Screening 36 / 36 100% 4.6 180 SB-3250M 180 11 / 36 31% 0.02 1.7 SB-540M 1.7 3 / 36 8% 0.09 J 0.11 J SB-3250M 0.11 36 / 36 100% 9.1 325 SB-1140M 325 0 / 36 0% 10.0 10.0 24 / 44 55% 0.02 0.82 SB-2940M 0.82 44 / 44 100% 7000 48200 SB-2940M 48200 9 / 44 20% 0.11 J 0.69 J SB-3250M 0.69 40 / 44 91% 0.03 16.0 SB-2940M 16.0 48200 9 / 44 20% 0.11 J 0.69 J SB-3250M 0.69 40 / 44 91% 0.03 16.0 SB-2940M 203 <</td> <td> Name</td> <td> Naximum Detection</td> <td> Name</td> <td> Name</td>	Detection Detect* flag Detect flag 36 / 36 100% 4.6 180 1.7 3.7	Detection Detect* flag Detect flag Location 36 / 36 100% 4.6 180 SB-3250M 11 / 36 31% 0.02 1.7 SB-540M 3 / 36 8% 0.09 J 0.11 J SB-3250M 36 / 36 100% 9.1 325 SB-1140M 0 / 36 0% 10.0 24 / 44 55% 0.02 0.82 SB-2940M 44 / 44 100% 7000 48200 SB-2940M 9 / 44 20% 0.11 J 0.69 J SB-3250M 40 / 44 91% 0.03 16.0 SB-2940M 43 / 44 98% 5.68 203 SB-2940M 41 / 44 93% 13.0 210 SB-3250M 7 / 42 17% 0.07 1.3 SB-2940M 44 / 44 100% 740 2700 SB-2940M 3 / 20 0.	Frequency of Detection Minimum Detect* Maximum Detect Maximum Hag Maximum Location Used for Screening 36 / 36 100% 4.6 180 SB-3250M 180 11 / 36 31% 0.02 1.7 SB-540M 1.7 3 / 36 8% 0.09 J 0.11 J SB-3250M 0.11 36 / 36 100% 9.1 325 SB-1140M 325 0 / 36 0% 10.0 10.0 24 / 44 55% 0.02 0.82 SB-2940M 0.82 44 / 44 100% 7000 48200 SB-2940M 48200 9 / 44 20% 0.11 J 0.69 J SB-3250M 0.69 40 / 44 91% 0.03 16.0 SB-2940M 16.0 48200 9 / 44 20% 0.11 J 0.69 J SB-3250M 0.69 40 / 44 91% 0.03 16.0 SB-2940M 203 <	Name	Naximum Detection	Name	Name

COPEC - Chemical of Potential Ecological Concern

ug/L - micrograms per liter

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- J estimated value
- * If sample was not detected, value represents the maximum non-detect reporting limit (RL)
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).
- (e) The compound is present above its RL in less than 5% of the samples and the number of samples collected exceeds 20.

Attachment 4.19 Selection of Surface Water COPECs for the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

								Concentration		·	, , ,		
	Frequen	cy of	Minimum		Maximum		Maximum	Used for		Benchmark	Hazard		Reason
Chemicals	Detecti	ion	Detect*	flag	Detect	flag	Location	Screening	Benchmark	Source	Quotient	COPEC?	Code
Metals, Dissolved (ug/L)													
Aluminum	26 / 29	90%	5.7		122	J	OR-11850M	122	87	(1)	1.4	Yes	. (a)
Antimony	10 / 29	34%	0.03		3.0		OR-22450M	3.0	80	(4)	<1	No	(b)
Arsenic	2 / 29	7%	0.29		0.30		OR-15000M	0.30	150	(1)	<1	No .	(b)
Barium	29 / 29	100%	9.2		374		OR-8350M	374	220	(4)	1.7	Yes	(a)
Beryllium	1 / 29	3%	1.2	J	1.2	J	OR-11850M	1.2	3.6	(4)	<1	No	(b),(e)
Cadmium	9 / 29	31%	0.02		0.13		OR-22450M	0.13	0.25	(1)	<1	No	(b)
Calcium	29 / 29	100%	7900		39600	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OR-22450M	39600	NA		NA	No	(d)
Chromium	7 / 29	24%	0.16	J	5.6	J	OR-11850M	5.6	11	(1)	<1	No	(b)
Cobalt	16 / 29	55%	0.03	J	1.7	-11/2000/2000/200/200/20	OR-22450M	1.7	24	(4)	<1	No	(b)
Copper	28 / 29	97%	0.33	J	76.3		OR-22450M	76.3	9.0	(1)	8.5	Yes	(a)
Iron	26 / 29	90%	21.0		554		OR-8350M	554	1000	(1)	<1	No	(b)
Lead	8 / 29	28%	0.07		3.6	J	OR-11850M	3.6	2.5	(1)	1.4	Yes	(a)
Magnesium	29 / 29	100%	650		2400		OR-15000M	2400	NA		NA -	No	(d)
Manganese	29 / 29	100%	4.4		160		OR-19150M	160	120	(6)	1.3	Yes	(a)
Mercury	3 / 15	20%	0.12	J	0.16		OR-11800M	0.16	0.77	(1)	<1	No	(b)
Molybdenum .	14 / 18	78%	0.05		20.0		OR-22450M	20.0	370	(6)	<1	No	(b)
Nickel	15 / 29	52%	0.20		10.4		OR-22450M	10.4	52	(1)	<1	No	(b)
Potassium	29 / 29	100%	600		3300		OR-15000M	3300	NA		NA	No	(d)
Selenium	2 / 27	7%	0.20	J	3.6	J	OR-11850M	3.6	5.0	(1)	<1	No	(b)
Silver	4 / 29	14%	0.03		0.43	J	OR-8350M	0.43	0.32	(1)	1.4	Yes	(a)
Sodium	26 / 26	100%	2400		13700		OR-15000M	13700	NA		NA	No	(d)
Strontium	18 / 18	100%	53.0	Mobiliative	230	***************************************	OR-15000M	230	1500	(6)	<1	No	(b)
Thallium	2 / 29	7%	0.09		5.0	J	OR-11850M	5.0	40	(5)	<1	No	(b)
Vanadium	8 / 29	28%	0.13	J	0.44		OR-22450M	0.44	12	(4)	<1	No	(b)
Zinc	29 / 29	100%	0.94		9100		OR-15000M	9100	120	(1)	76	Yes	(a)

ug/L - microgram per liter

COPEC - Chemical of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- J estimated value
- (a) The maximum concentration exceeded its benchmark.
- (b) The maximum concentration did not exceed its benchmark.
- (c) No benchmark was available.
- (d) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).
- (e) The compound is present above its RL in less than 5% of the samples and the number of samples collected exceeds 20.

Attachment 4.20 Summary of Surface Water COPECs for Aquatic Receptors Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		Po	nds				
COPEC	2	3	4	5	Ely Brook	School House Brook	The EBOR
Aluminum					V	√	1
Arsenic		\ \	\ \	√ √			
Barium							V
Beryllium	√	\ \	1	√ .			
Cadmium		V		V	V	V	
Chromium				V	V	 Proceedings of the state of the	\$8-\$6.00 \$6.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00 \$1.00
Cobalt		The state of the s		I. V	V	- Balance (C. C. C	and distinction (legister and play reach a minimal mile of a fig. of a fig. of a fig. of play 2 years (fig. of the appearance of the fig. of the appearance of the fig. of the appearance of the
Copper	V		V	 	٧.	1	V
Iron					1		
Lead				 			1
Manganese	V	V	√ √	√	V		V
Nickel					1		
Selenium			√ √	V			
Silver	V	V	,√,		V	and graphing terminantly a major and defended and reference work from the forest of the first of	1
Thallium		The state of the s	1	V			
Zinc	\ \ \	1,	1	V	1		1

 $[\]sqrt{\ }$ - Chemical was selected as a COPEC

Attachment 4.21 Selection of Brook Trout COPECs for School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Minimum		Maximum	1			
Chemicals	Detection	Detect*	flag	Detect	flag	Maximum Location	COPEC?	Reason Code
Metals (mg/kg, wwt)	1							
Aluminium	1/1	12.4		12.4		SB-3125M	Yes	(a)
Antimony	0 / 1	0.10		***			No	(b)
Arsenic	0 / 1	0.30				***	No	(b)
Barium	1/1	0.30	No. of Contract of Section 18 4445	0.30		SB-3125M	Yes	(a)
Beryllium	0 / 1	0.01		-			Yes	(d)
Cadmium	1/1	0.02	Annual or for the last about a witness	0.02	The state of the s	SB-3125M	Yes	(a)
Chromium	1/1	0.30	-	0.30	- days a sub-transfer sub-transfer	SB-3125M	Yes	(a)
Cobalt	1/1	0.10		0.10	**********	SB-3125M	Yes	(a)
Copper	1/1	7.9	and the best of the control of the second positions of	7.9		SB-3125M	Yes	(a)
Iron	and an experience of the second secon	46.9	Control of the second	46.9		SB-3125M	Yes	(a)
Lead	1/1	0.02	0.00	0.02	******************	SB-3125M	Yes	(a)
Manganese	1 / 1	2.9		2.9	***************************************	SB-3125M	Yes	(a)
Mercury	1/1	0.003	31531/4111111111111111111111111111111111	0.003		SB-3125M	Yes	(a)
Molybdenum	0/1	0.30				and man	Yes	(d)
Nickel	0/1	0.10				and the second s	No	(b)
Selenium	1/1	0.30	***************************************	0.30		SB-3125M	Yes	(a)
Thallium	0/1	0.03				** ·	Yes	(d)
Vanadium	0 / 1	0.20			and the second of the second o		Yes	(c)
Zinc	1/1	18.8		18.8	******************	SB-3125M	Yes	(a)

mg/kg, wwt - milligram per kilogram, wet weight

Note 1: The concentrations associated with the COPECs will be compared to fish Critical Body Residue (CBR) values.

Note 2: See Section 4.4.1 for the fish COPEC selection process.

COPEC - Chemical of Potential Ecological Concern

- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) Analyte was present above its detection limit in at least one of the fish samples.
- (b) Analyte was not present above its detection limit in all of the fish samples and the maximum non-detect RL was less than the No Effect CBR value.
- (c) Analyte was not present above its detection limit in all of the fish samples, but the maximum non-detect RL exceeded the No Effect CBR value.
- (d) Analyte was not present above its detection limit in all of the fish samples but no No Effect CBR value was available.

Created by: RAR 1/8/2008 QC'd: EK 2/19/2008

Attachment 4.22 Selection of Blacknose Dace COPECs for School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

(COMMANDE COMMANDE CO	Frequency of	Minimum		Maximum				
Chemicals	Detection	Detect*	flag	Detect	flag	Maximum Location	COPEC?	Reason Code
Metals (mg/kg, wwt)								
Aluminium	8 / 8	1.3		11.5		SB-140M	Yes	(a)
Antimony	4 / 8	0.10	AND A THE PROPERTY OF THE PROPERTY OF	0.40	A STATE OF THE PROPERTY OF THE	SB-1360M	Yes	(a)
Arsenic	0/8	0.30					No	(b)
Barium	8/8	1.4		2.3		SB-3125M	Yes	(a)
Beryllium	0/8	0.01		when heads	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Yes	(d)
Cadmium	8 / 8	0.03		0.07		SB-1360M	Yes	(a)
Chromium	8/8	0.30		0.50		SB-2400M	Yes	(a)
Cobalt	8/8	0.02		0.11	******************	SB-140M	Yes	(a)
Copper	8/8	1.6	American American Continued and American	5.9		SB-140M	Yes	(a)
Iron	8/8	26.6	announter in a non-la demonde	44.7	and the second of the second of the second of	SB-140M	Yes	(a)
Lead	8 / 8	0.01		1.2	***************************************	SB-2400M	Yes	(a)
Manganese	8/8	2.63	***************************************	4.2		SB-1360M	Yes	(a)
Mercury	8/8	0.008	***************************************	0.02		SB-3125M	Yes	(a)
Molybdenum	0/8	0.30		Annual Control of the		and was the analogoid book to the encountries and an absent date it is it is the deviate a deviate a literal and had the	Yes	(d)
	-					SB-1360M		
						SB-140M		
Nickel	8 / 8	0.10		0.20		SB-3125M	Yes	(a)
	i da garangan paramanan in Garangan pangkan til tag a salam banda pangkan pangkan pangkan til tag a tan ang Kasasa (1967) pangkan manahin	A STATE OF THE PARTY OF THE PAR	***************************************	entition of the second state of the second s		SB-3125M		tier ja van talen daar van de neem een van de jaar van gebruik van de
Selenium	8 / 8	0.40		0.50		SB-2400M	Yes	(a)
Thallium	0 / .8	0.03			response de la composition della composition del		Yes	(d)
	and to promote the first transcription and desired one controdition on an experience recomblished in recognished to the		Annean communication of the second		destruction of the second second	SB-1360M	A TO DO CONTANTO DE CONTANTO CONTAN	A CONTRACTOR OF THE PROPERTY O
Vanadium	2 / 8	0.10		0.10		SB-2400M	Yes	(a)
Zinc	8/8	33.0		40.9		SB-1360M	Yes	(a)

mg/kg, wwt - milligrams per kilogram, wet weight

COPEC - Chemical of Potential Ecological Concern

Note 1: The concentrations associated with the COPECs will be compared to fish Critical Body Residue (CBR) values.

Note 2: See Section 4.4.1 for the fish COPEC selection process.

- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) Analyte was present above its detection limit in at least one of the fish samples.
- (b) Analyte was not present above its detection limit in all of the fish samples and the maximum non-detect RL was less than the No Effect CBR value.
- (c) Analyte was not present above its detection limit in all of the fish samples, but the maximum non-detect RL exceeded the No Effect CBR value.
- (d) Analyte was not present above its detection limit in all of the fish samples but no No Effect CBR value was available.

Created by: RAR 2/8/2008 QC'd: EK 2/19/2008

Attachment 4.23 Selection of Brook Trout COPECs for the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Minimum		Maximum				
Chemicals	Detection	Detect*	flag	Detect	flag	Maximum Location	COPEC?	Reason Code
Metals (mg/kg, wwt)				· · · · · · · · · · · · · · · · · · ·	***************************************		***	
Aluminium	2/2	1.2		3.4		OR-23200M	Yes	(a)
Antimony	0 / 2	0.10				and the second	No	(b)
Arsenic	0/2	0.30				Positive to a section of the section	No	(b)
Barium	2/2	0.44		0.51		OR-23200M	Yes	(a)
Beryllium	0 / 2	0.01					Yes	(d)
Cadmium	2/2	0.01	1	0.03		OR-23200M	Yes	(a)
Chromium	1/2	0.30		0.30		OR-23200M	Yes	(a)
Cobalt	2/2	0.02		0.06		OR-23200M	Yes	(a)
Copper	2/2	0.80		1.3		OR-23200M	Yes	(a)
Iron .	2/2	21.0		24.6		OR-23200M	Yes	(a)
Lead	1 / 2	0.01		0.01		OR-23200M	Yes	(a)
Manganese	2/2	2.0		3.1		OR-23200M	Yes	(a)
Mercury	2/2	0.005		0.006		OR-23200M	Yes	(a)
Molybdenum	0 / 2	0.30					Yes	(d)
Nickel	1/2	0.10		0.10		OR-23200M	Yes	(a)
Selenium	2/2	0.30		0.30		OR-23200M	Yes	(a)
Thallium	0/2	0.03				and the second section that a second at second	Yes	(d)
Vanadium	0/2	0.20		. ED		Millionaministratististististististististististististist	Yes	(c)
Zinc	2/2	16.6		18.2		OR-23200M	Yes	(a)

mg/kg, wwt - milligram per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPEC - Chemical of Potential Ecological Concern

Note 1: The concentrations associated with the COPECs will be compared to fish Critical Body Residue (CBR) values.

Note 2: See Section 4.4.1 for the fish COPEC selection process.

- * Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.
- (a) Analyte was present above its RL in at least one of the fish samples
- (b) Analyte was not present above its RL in all of the fish samples and the maximum non-detect RL was less than the No Effect Critical Body Residue (CBR) value
- (c) Analyte was not present above its RL in all of the fish samples, but the maximum non-detect RL exceeded the No Effect Critical Body Residue (CBR) value.
- (d) Analyte was not present above its RL in all of the fish samples but no No Effect Critical Body Residue (CBR) value was available.

Created: RAR 1/7/2008 QC'd: EK 2/19/2008

Attachment 4.24 Selection of Blacknose Dace COPECs for the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Minimum		Maximum			T	
Chemicals	Detection	Detect*	flag	Detect	flag	Maximum Location	COPEC?	Reason Code
Metals (mg/kg, wwt)								
Aluminum	6/6	3.8		16.8		OR-23630M	Yes	(a)
Antimony	0/6	0.10					No ·	(b)
Arsenic	0/6	0.30				Ab Directed from the transfer to a decision research and a first from the design from a second decision appearance and appearance and a second and a first from the decision appearance and appearance an	No	(b)
Barium	6/6	1.4		2.4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OR-23200M	Yes	(a)
Beryllium	0/6	0.01				podelokom kan mirikata kalikat kemendi eda kindaj madalaikat o <u>a</u> bida eda kida ayihdi muyalega kemana aya aj jadi sa kanapir	Yes	(d)
Cadmium	6/6	0.03	yes would have been been been been been been been be	0.07		OR-23630M	Yes	(a)
	\$	anger and the contraction of the	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	450m444344444444444444444444444444444444		OR-23200M		AND THE PROPERTY OF THE PROPER
Chromium	6/6	0.20		0.30		OR-23630M	Yes	(a)
Cobalt	6/6	0.06		0.09	***************************************	OR-23200M	Yes	(a)
Copper	6/6	1.8		3.5		OR-23630M	Yes	(a)
Iron	6/6	28.2		50.8		OR-23630M	Yes	(a)
Lead	6/6	0.02	and the second second second	0.04	0000	OR-23200M	Yes	(a)
Manganese	6/6	4.0		6.4		OR-23630M	Yes	(a)
Mercury	6/6	0.01		0.02		OR-23630M	Yes	(a)
Molybdenum	0/6	0.30		**************************************		plantic for the selection of the foliate planting dependence death at the real form of the plantic dependence of the production of the planting of the plantin	Yes	(d)
						OR-23200M		
Nickel	6/6	0.10		0.20		OR-23630M	Yes	(a)
Selenium	6/6	0.30		0.50		OR-23630M	Yes	(a)
Thallium	0/6	0.03				e manaran sayara mara sa manara mara kana manaka manaran manana ya maka palikus nya nya nya nya maka sa saya m	Yes	(d)
Vanadium	0/6	0.20					Yes	(c)
Zinc	6/6	33.2		41.6		OR-23630M	Yes	(a) ·

mg/kg wwt = milligrams per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPEC - Chemical of Potential Ecological Concern

Note 1: The concentrations associated with the COPECs will be compared to fish Critical Body Residue (CBR) values.

Note 2: See Section 4.4.1 for the fish COPEC selection process.

- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) Analyte was present above its detection limit in at least one of the fish samples.
- (b) Analyte was not present above its detection limit in all of the fish samples and the maximum non-detect RL was less than the No Effect Critical Body Residue (CBR) value.
- (c) Analyte was not present above its detection limit in all of the fish samples, but the maximum non-detect RL exceeded the No Effect CBR value.
- (d) Analyte was not present above its detection limit in all of the fish samples but no No Effect CBR value was available.

Created by: RAR 2/8/2008 QC'd: EK 2/19/2008

Summary of Brook Trout and Blacknose Dace COPECs

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	School H	ouse Brook	The EBOR				
COPEC	Brook Trout	Blacknose Dace	Brook Trout	Blacknose Dace			
Aluminium	1	\ \	√	√			
Antimony		√					
Barium	1	V	e de la companya del la companya de la companya del la companya de				
Beryllium		1	V	1			
Cadmium	<u> </u>		√	V .			
Chromium	V	V	V	V			
Cobalt	······································	arra shilithin bili occide central irani celeccian in distribuin suri irani shinki suri successi cina musi scisum tracurati.	V	1			
Copper		7	V	V			
Iron .	1	7	7	V			
Lead		V	V	V			
Manganese			**************************************	1			
Mercury	1	1	V	1			
Molybdenum		V	1				
Nickel				The state of the s			
Selenium	The second secon						
Thallium	7		V				
Vanadium	1		V	, .			
Zinc	1	and American Aris Except (1) comment to the Improved Hermitian and the control of the American Aris (1) of the Control of the Contr					

^{√ -} Chemical was selected as a COPEC

Selection of Fish (Brook Trout and Blacknose Dace Combined) COPECs for School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Minimum		Maximum				
Chemicals	Detection	Detect*	flag	Detect	flag	Maximum Location	COPEC?	Reason Code
Metals								
Aluminium	9/9	1.3		12.4		SB-3125M	Yes	(a)
Antimony	4/9	0.10		0.40	***********************	SB-1360M	Yes	(a)
Arsenic	0/9	0.30			4		No	(b)
Barium	9/9	0.30	State and the Control of the Control	2.3		SB-3125M	Yes	(a)
Beryllium	0/9	0.01				20 Section Control - 4-00 Control College Let Character Colored to American Colored Colored Section Colored Sec	No	(b)
Cadmium	9/9	0.02		0.07		SB-1360M	Yes	(a)
Chromium	9/9	0.30		0.50	300-11000-12-11-11000	SB-2400M	Yes	(a)
Cobalt	9/9	0.02		0.11		SB-140M	Yes	(a)
Copper	9/9	1.6		7.9		SB-3125M	Yes	(a)
Iron	9/9	26.6		46.9		SB-3125M	Yes	(a)
Lead	9/9	0.01		1.17		SB-2400M	Yes	(a)
Manganese	9 / 9	2.6		4.2		SB-1360M	Yes	(a)
Mercury	9/9	0.003		0.02		SB-3125M	Yes	(a)
Molybdenum	0/9	0.30					No	(b)
	,					SB-1360M		
	•					SB-3125M		
Nickel	8/9	0.10		0.20		SB-140M	Yes	(a)
	iki mala iku ofakulak kata kentakan kalan kentak katan kentak katan kentak pekan dan menjeri menduluh Konsulman Kentak iku ofakulak katan kentak		**************************************	***************************************	***************************************	SB-2400M		and many many later and distributed the property of the proper
Selenium	9/9	0.30		0.50		SB-3125M	Yes	(a)
Thallium	0/9	0.03	***************************************	THE REAL PROPERTY OF THE PROPE			No	(b)
				***************************************		SB-1360M		·
Vanadium	2/9	0.10		0.10		SB-2400M	Yes	(a)
Zinc	9/9	18.8		40.9	- William Control	SB-1360M	Yes	(a)

COPEC - Chemical of Potential Ecological Concern

Note 1: The concentrations associated with the COPECs will be compared to fish Critical Body Residue (CBR) values.

Note 2: See Section 4.4.1 for the fish COPEC selection process.

^{* -} If sample was not detected, value represents maximum non-detect reporting limit (RL)

⁽a) Analyte was present above its detection limit in at least one of the fish samples

⁽b) Analyte was not present above its detection limit in all of the fish samples.

Selection of Fish (Brook Trout and Blacknose Dace Combined) COPECs for the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

,	Frequency of	Minimum		Maximum		Maximum		
Chemicals	Detection	Detect*	flag	Detect	flag	Location	COPEC?	Reason Code
Metals (mg/kg, wwt)								
Aluminium	8 / 8	1.2		16.8		OR-23630M	Yes	(a)
Antimony	0/8	0.10	And the second s			annonly real manages in the part of the pa	No	(p)
Arsenic	0 / 8	0.30					No	. (b)
Barium	8 / 8	0.44	And the second s	2.4	VIII 100 100 100 100 100 100 100 100 100	OR-23200M	Yes	(a)
Beryllium	0 / 8	0.01				The second secon	No	(b)
Cadmium	8/8	0.01	-V	0.07	400 400 AV 10-0 Comment	OR-23630M	Yes	(a)
					04.000.000.000.000.000	OR-23200M	2000 David Control (2000)	in the second
Chromium	7 / 8	0.20		0.30		OR-23630M	Yes	(a)
Cobalt	8/8	0.02	m parteur procession and an artist of the second	0.09		OR-23200M	Yes	(a)
Copper	8 / 8	0.80		3.5	Walter Control Control of Control	OR-23630M	Yes	(a)
Iron	8 / 8	21.0		50.8		OR-23630M	Yes	(a)
Lead	7 / 8	0.01		0.04		OR-23200M	Yes	(a)
Manganese	8/8	2.0	m(1) (-1)/-(-1)/	6.4	0.0 \$25,000,000,000,000,000	OR-23630M	Yes	(a)
Mercury	8/8	0.005		0.02		OR-23630M	Yes	(a)
Molybdenum	0/8	0.30	No. of Manager and an angelian and an analysis of the state of the sta		and the second second second second	A STATE OF THE PROPERTY OF THE	No	(b)
	s.	1		***************************************		OR-23200M		unterstellisistemmen vitat terstelet timmen genetiges kant pilotemet sie interescent vite interescent vite vit
Nickel	7 / 8	0.10		0.20		OR-23630M	Yes	(a)
Selenium	8/8	0.30		0.50		OR-23630M	Yes	(a)
Thallium	0/8	0.03		· · · · · · · · · · · · · · · · · · ·	***************************************		No	(b)
Vanadium	0 / 8	0.20				***************************************	No	(b) .
Zinc	8/8	16.6	100 No. (100 No. 100 N	41.6		OR-23630M	Yes	(a)

mg/kg, wwt = milligram per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPEC - Chemical of Potential Ecological Concern

Note 1: The concentrations associated with the COPECs will be compared to fish Critical Body Residue (CBR) values.

Note 2: See Section 4.4.1 for the fish COPEC selection process.

- * If sample was not detected, value represents maximum non-detect reporting limit (RL)
- (a) Analyte was present above its detection limit in at least one of the fish samples
- (b) Analyte was not present above its detection limit in all of the fish samples.

Created by: RAR 2/1/2008 QC'd: EK 5/15/2008

Summary of Fish (Brook Trout and Blacknose Dace Combined) COPECs Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

COPEC	School House Brook	The EBOR
Aluminium	√	V
Antimony	√	
Barium	V	V
Cadmium	V	V
Chromium	V	V
Cobalt		
Copper	V	V
Iron	V	V
Lead	V	. 1
Manganese	V	V
Mercury	√ √	,
Nickel		
Selenium	7	
Vanadium	V	And the second s
Zinc	A STATE OF THE STA	

^{√ -} Chemical was selected as a COPEC

Selection of Surface Water COPECs for Wildlife at School House Brook

Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	T			·		Ī		Concentration	T	
	Frequency	of	Minimum		Maximum		Maximum	Used for		Reason
Chemicals	Detectio	n	Detect*	flag	Detect	flag	Location	Screening	COC?	Code
Metals, Total (ug/L)				*****************						
Aluminum	37 / 37	100%	39		2000		SB-2940M	2000	Yes	(a)
Antimony	5 / 38	13%	0.03		0.67	and the state of t	SB-140M	0.67	Yes	(a)
Arsenic	7 / 38	18%	0.09	J	0.19	J	SB-2900M	0.19	Yes	(à)
Barium	37 / 37	100%	9.0		30.0		SB-2940M	30.0	Yes	(a)
Beryllium	2 / 42	4.8%	0.06		0.08		SB-2940M	0.08	No	(b)
Cadmium	26 / 46	57%	0.02		1.2	11. 10.4×100×××2×2××001	SB-3245M	1.2	Yes	(a)
Calcium	45 / 45	100%	7300		47900		SB-2940M	47900	No	, (c)
Chromium	21 / 46	46%	0.22	J	4.5	В	SB-2860M	4.5	Yes	(a)
Cobalt	41 / 45	91%	0.08		25.0		SB-3245M	25.0	Yes	(a)
Copper	45 / 45	100%	6.0	,	1100		SB-3245M	1100	Yes	(a)
Iron	45 / 45	100%	13.9	J	2200		SB-2940M	2200	Yes	(a)
Lead	25 / 44	57%	0.05		16.0	***************************************	SB-20M	16.0	Yes	(a)
Magnesium	45 / 45	100%	700	333.00 W.G. (14.00 V	2700		SB-2940M	2700	No	(c)
Manganese	45 / 45	100%	0.84	J	260		SB-3245M	260	Yes	(a)
Mercury	3 / 18		0.13	J	0.17		SB-35M	0.17	Yes	(a)
Molybdenum	15 / 37	41%	0.04		0.40		SB-540M	0.40	Yes	(a)
Nickel	41 / 46	89%	0.20	0007011111111111	12.0		SB-540M	12.0	Yes	(a)
Potassium	37 / 37	100%	700		3960	J	SB-2960M	3960	No	(c)
Selenium	3 / 46	7%	0.50		8.5	J	SB-3100M	8.5	Yes	(a)
Silver	4 / 46	9%	0.01		0.67	Ĵ	SB-2960M	0.67	Yes	(a)
Sodium	34 / 34	100%	840		9900		SB-540M	9900	No	(c)
Strontium	29 / 29	100%	51.0		274		SB-2940M	274	Yes	(a)
Thallium	0 / 46	0%	25.0					25.0	No	(b)
Vanadium	24 / 46	52%	0.12		2.7		SB-2940M	2.7	Yes	(a)
Zinc	45 / 45	100%	1.7	J	150		SB-3245M	150	Yes	(a)
Cyanide	0/9		5.0					5.0	No	(d) .

ug/L - micrograms per liter

COPEC - Chemical of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- J estimated value
- B analyte is associated with blank contamination
- * If sample was not detected, value represents the maximum non-detect reporting limit (RL)
- (a) The compound is present above its RL in more than 5% of the samples when number of samples collected was greater than 20 or it was detected at least once when the number of samples collected was less than 20.
- (b) The compound is present above its RL in less than 5% of the samples and the number of samples collected exceeds 20.
- (c) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).
- (d) The compound was not detected in any of the samples.

Selection of Surface Water COPECs for Wildlife at the EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		uency of	Minimum		Maximum		Maximum	,	Reason
Chemicals	Det	tection	Detect*	flag	Detect	flag	Location	COPEC?	Code
Metals. Total (ug/L)									
Aluminum	32 / 3		****		820	-400-000-000-000-000	OR-22450M	Yes	(a)
Antimony	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	35 20%	0.02		0.76		OR-23630M	Yes	(a)
Arsenic	CONTRACTOR	35 9%	0.15	J	0.20		OR-22450M	Yes	(a)
Barium	33 / 3	35 94%	10.0		30		OR-22450M	Yes	(a)
Beryllium	0/3	35 0%	10.0					No	(b)
Cadmium	9/3	35 26%	0.02		0.09		OR-22450M	Yes	(a)
Calcium	35 / 3	35 100%	8500	***************************************	38200	***************************************	OR-22450M	No	(c)
Chromium	4/3	35 11%	0.13	J	1.2		OR-22450M	Yes	(a)
Cobalt	18 / 3	35 51%	0.02	***************************************	1.8	-14**********************	OR-22450M	Yes	(a)
Copper	33 / 3	35 94%	0.28	J	67.0		OR-22450M	Yes	(a)
Iron	34 / 3	35 97%	29.0	J	880		OR-22450M	Yes	(a)
and the second s						***************************************	OR-15000M	***************************************	an na ann an an an an ann an an an an an
Lead	14 / 3	35 40%	0.05		0.56		OR-22450M	Yes	(a)
Magnesium	34 / 3	35 97%	650		2400		OR-15000M	No	(c)
Manganese	35 / 3	35 100%	6.1	A CONTRACTOR OF THE CONTRACTOR	171		OR-19150M	Yes	(a)
Mercury	3 / 1	18	0.12	J	0.20		OR-22390M	Yes	(a)
Molybdenum	15 / 1	19	0.03		0.40		OR-15000M	Yes	(a)
Nickel	18 / 3	35 51%	0.12	, I constitution of the second	10.0		OR-15000M	Yes	(a)
Potassium	34 / 3	35 97%	700	*	3300		OR-15000M	No	(c)
Selenium	2/3	35 6%	2.2	J	5.8	J	OR-22390M	Yes	(a)
Silver	1/3	35 3%	0.03		0.03		OR-22450M	No	(b)
Sodium	31 / 3	32 97%	2200	***************************************	13600	A SAMELE AND ASSESSMENT	OR-15000M	No	(c)
Strontium	19 / 1	19	55.0	***************************************	194	12175	OR-15000M	Yes	(a)
Thallium	0 / 3	35 0%	25.0		·			No	(b)
Vanadium	14 / 3	35 40%	0.12		0.91	alabarana manana manana ka	OR-22450M	Yes	(a)
Zinc	31 / 3	35 89%	0.65	J	3100	***************************************	OR-11850M	Yes	(a)
Cyanide	0 / 4	4	5.0		***************************************	***************************************		No	(d)

COPEC - Chemical of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

ug/L - micrograms per liter

- J estimated value
- (a) The compound is present above its RL in more than 5% of the samples when number of samples collected was greater than 20 or it was detected at least once when the number of samples collected was less than 20.
- (b) The compound is present above its RL in less than 5% of the samples and the number of samples collected exceeds 20.
- (c) The compound is a physiological electrolyte, the analyte was not selected as a COPEC (USEPA, 2001).
- (d) The compound was not detected in any of the samples.

^{* -} If sample was not detected, value represents maximum non-detect reporting limit (RL)

Attachment 4.31 Summary of Surface Water COPECs for Wildlife Receptors Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

COPEC:	School House Brook	The EBOR
Aluminum	V	√
Antimony	√	√
Arsenic	V	V
Barium	V	V
Beryllium		
Cadmium	V	√
Chromium	V	V
Cobalt	V	1
Copper	V	V
Iron	√	V
Lead	√	V
Manganese	V	V
Mercury		V
Molybdenum	V	V
Nickel	√	V
Selenium	√ .	V
Silver	√	
Strontium	V	V
Thallium		
Vanadium	√	V
Zinc	√	V
Cyanide		`

^{√ -} Chemical was selected as a COPEC

						Jun	e 2010						
	Attachment 4.32: BERA End	points	and W	eight-	of-Evid	ence D	ocume	ntation	1				
								Attrib	utes ^a				
Assessment Endpoints	Measures of effects	Descriptive Score ^b	Numeric Score ^c	Biological Linkage	Correlation of Stressor/Response	Utility of Measure	Quality of Data	Site-Specificity	Sensitivity	Spatial representativeness	Temporal Representativeness	Quantitativeness	Standard Measure
A stable and healthy benthic invertebrate	1.A: Compare COPEC levels in sediment samples to conservative benchmarks	L	27	2	2	2	7	1	2	2	3	2	4
community	1.B: Compare dissolved COPEC levels in pore water samples to conservative benchmarks	L	27	2	2	2	7	1	2	2	3	2	4
	1.C: Measure AVS-SEM to estimate metals bioavailability	L-M	42	4	4	4	7	4	3	2	3	4	7
	1.D: Measure toxicity in <i>H. azteca</i> and <i>C. tentans</i> exposed to pore water	М	56	5	6	6	7	5	6	4	3	6	8
	1.E: Measure toxicity in <i>H. azteca</i> and <i>C. tentans</i> exposed to bulk sediment	М-Н	64	6	7	6	7	5	6	5	7	7	8
	1.F: Evaluate the structure and function of the benthic invertebrate community	Н	82	10	7	9	7	10	7	8	8	8	8

June 2010													
	Attachment 4.32: BERA End	lpoints	and W	eight-	of-Evid	ence D	ocume	ntatio	า				
								Attrib	utes ^a				
Assessment Endpoints	Measures of effects	Descriptive Score ^b	Numeric Score ^c	Biological Linkage	Correlation of Stressor/Response	Utility of Measure	Quality of Data	Site-Specificity	Sensitivity	Spatial representativeness	Temporal Representativeness	Quantitativeness	Standard Measure
2. A stable and healthy water column invertebrate	2.A: Compare dissolved COPEC levels in surface water samples to conservative benchmarks	L	27	2	2	2	7	1	2	2	3	2	4
community	2.B: Measure survival and reproduction in <i>C. dubia</i> exposed for 7 days to surface water samples	М	56	5	6	6	7	5	6	4	3	6	8
3. A stable and healthy fish community	3. A: Compare dissolved COPEC levels in surface water samples to conservative benchmarks	L	27	2	2	2	7	1	2	2	3	2	4
	3. B: Evaluate survival and growth in juvenile fathead minnows (<i>Pimephales promelas</i>) exposed for 7 days to surface water samples	М	56	5	6	6	7	5	6	4	3	6	8
	3. C: Measure COPEC levels in whole fish for comparison to CBRs	М	57	5	4	5	6	8	5	6	8	8	5
	3. D: Evaluate the structure and function of the fish community	Н	82	10	7	9	7	10	7	8	8	8	8

	Attachment 4.32: BERA End	points	and W	/eight-	of-Evid	ence D	ocume	ntation	า				
								Attribu	utes ^a				
Assessment Endpoints	Measures of effects	Descriptive Score ^b	Numeric Score ^c	Biological Linkage	Correlation of Stressor/Response	Utility of Measure	Quality of Data	Site-Specificity	Sensitivity	Spatial representativeness	Temporal Representativeness	Quantitativeness	Standard Measure
4. Stable and healthy amphibian populations	4.A: Compare dissolved COPEC levels in surface water samples to conservative benchmarks	L	27	2	2	2	7	1	2	2	3	2	4
	4.B: Evaluate toxicity in juvenile fathead minnows (surrogate for amphibian embryo-larvae) exposed for 7 days to surface water samples	M	53	4	6	6	7	5	4	4	3	6	8
	4.C: Evaluate <i>in-situ</i> survival and development of frog eggs and tadpoles	Н	85	8	8	9	8	10	7	7	9	9	3
5. Stable and healthy insectivorous bird populations	5.A: Use food chain modeling to calculate the mean and maximum daily dose for comparison to TRVs	L-M	41	4	7	3	5	5	2	4	4	2	5
6. Stable and healthy insectivorous mammal populations	6.A: Use food chain modeling to calculate the mean and maximum daily dose for comparison to TRVs	L-M	41	4	7	3	5	5	2	4	4	2	5

	Attachment 4.32: BERA End	points	and W	eight-	of-Evid	ence D	ocume	ntatio	า				
								Attrib	utes ^a				
Assessment Endpoints	Measures of effects	Descriptive Score ^b	Numeric Score ^c	Biological Linkage	Correlation of Stressor/Response	Utility of Measure	Quality of Data	Site-Specificity	Sensitivity	Spatial representativeness	Temporal Representativeness	Quantitativeness	Standard Measure
7. Stable and healthy piscivorous bird populations	7.A: Use food chain modeling to calculate the mean and maximum daily dose for comparison to TRVs	М	57	7	7	6	7	7	6	4	4	2	7
8. Stable and healthy piscivorous mammal populations	8.A: Use food chain modeling to calculate the mean and maximum daily dose for comparison to TRVs	М	57	7	7	6	7	7	6	4	4	2	7

^a The attributes are discussed in Menzie et al. (1996) who provide the following guidance for scoring:

<u>Biological Linkage</u>: correlation and/or applicability of the measures of effect with respect to assessment endpoint; linkage based on known biological processes; similarity of effect; target organ, mechanism of action, and level of ecological organization.

<u>Correlation of Stressor/Response</u>: ability of the endpoint to demonstrate effects from chronic exposure to stressor and to correlate effects with degree of exposure; susceptibility and magnitude of effects.

<u>Utility of Measure</u>: applicability, certainty and scientific basis of measure that is used to judge environmental harm; sensitivity of benchmark in detecting environmental harm.

Quality of Data: extent to which data quality objectives (DQOs) are met.

<u>Site-Specificity</u>: representativeness of chemical or biological data, environmental media, species, environmental conditions, benchmark (or reference), and habitat types that are used in the measure of effect relative to those present at the site.

Final Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT U.S EPA – New England Region
Version 2.0
June 2010

<u>Sensitivity</u>: the percentage of the total possible variability that the endpoint is able to detect; the ability of the measure of effect to detect effects from stressor, rather than from natural or design variability or uncertainty.

<u>Spatial Representativeness</u>: spatial overlap of study area, measurement or sampling locations, locations of stressors, locations or receptors, and points of potential exposure to those receptors.

<u>Temporal Representativeness</u>: temporal overlap between the measurement period and the period during which chronic effects would likely be detected (daily, weekly, seasonally, annually).

<u>Quantitativeness</u>: results are quantitative/qualitative, subjective/objective, sufficient to test for statistical significance, and extent to which biological significance can be evaluated.

<u>Standard Measure</u>: method availability; ASTM approval, suitability and applicability to endpoint and site; need for modification of method; relationship to impact assessment, field survey, toxicity test, benchmark, toxicity quotient, or tissue residue analysis methodologies.

^b The overall score derived for each measure of effect is a qualitative measure of its relative importance in characterizing risk at a given assessment endpoint using multiple lines of evidence. The overall score is determined by the *a priori* assignments for the 10 attributes. The scores are defined as follows: Low = 10-30; Low-Medium = 31-45; Medium = 46-60; Medium-High = 61-75; High = 76-100.

^C The numeric scores represent the sum of all individual attribute scores for each measure of effect.

SECTION 5.0: EXPOSURE ANALYSIS

5.1 INTRODUCTION

The exposure analysis of this BERA estimated the COPEC concentrations to which each of the target receptor groups are exposed in the aquatic habitats affected by Site releases. Those aquatic habitats consisted of the following distinct EUs: (1) ponds 2 to 5 located on the east branch of Ely Brook (note: the BERA considered each of these ponds as an individual EU for baseline risk characterization, whereas the SLERA conservatively combined all of the ponds into one EU for COPEC selection), (2) the main stem of Ely Brook between where AMD first enters the stream and its confluence with Schoolhouse Brook, (3) Schoolhouse Brook below Ely Brook and the confluence with the EBOR, and (4) the EBOR below Schoolhouse Brook.

COPEC-specific EPCs were obtained for surface water, pore water, sediment, whole fish, and Estimated Daily Doses (EDDs) for wildlife receptors. The EPCs used in the risk calculations consisted of the following two values:

- A Central Tendency Exposure (CTE) was calculated by taking the arithmetic mean of the
 available analytical data for each COPEC identified in an EU. The CTE represented an "average"
 exposure experienced by the target receptors feeding or living in an EU.
- A Reasonable Maximum Exposure (RME) was calculated as the smaller of either the 95% Upper Confidence Limit (UCL) of the mean or the maximum value of the available analytical data for each COPEC identified in an EU. The RME was an "upper range" of exposure experienced by the target receptors feeding or living in an EU.

The 95%UCL represented the highest value for a sample mean which was statistically indistinguishable from the true population mean, at a 95% confidence level (i.e., α = 0.05). The 95% UCLs were calculated using the EPA's ProUCL (version 4.00.02) software. ProUCL tests for normality, lognormality, and gamma distribution of a dataset, selects a conservative distribution, and computes a UCL of the unknown population mean. The Pro UCL outputs are summarized in **Appendix 14**.

EPCs were also obtained for those same COPECs at each corresponding reference location. This step was needed to calculate incremental risk by subtracting "reference" risk from "Site" risk (see Section 7.1.1.3 for more details on this topic).

5.2 CALCULATING THE EPCS FOR DIRECT EXPOSURES BY AQUATIC RECEPTORS

5.2.1 Sediment EPCs

Sediment CTE and RME EPCs (mg/kg dw) to assess risk to benthic invertebrates were obtained for the four ponds on the east branch of Ely Brook (Attachments 5.1 to 5.4) and pond 1, their upstream reference location (Attachment 5.5), the main stem of Ely Brook (Attachment 5.6) and its upstream reference location (Attachment 5.7), Schoolhouse Brook (Attachment 5.8) and its upstream reference location (Attachment 5.9), and the EBOR (Attachment 5.10) and its upstream reference location (Attachment 5.11).

5.2.2 Sediment pore water EPCs

The sediment pore water CTE and RME EPCs (µg/L) to assess risk to benthic invertebrates were obtained for the main stem of Ely Brook (Attachment 5.12) and its upstream reference location (Attachment 5.13), Schoolhouse Brook (Attachment 5.14) and its upstream reference location (Attachment 5.15), and the EBOR (Attachment 5.16) and its upstream reference location (Attachment 5.17). These values assumed that risk to benthic invertebrates exposed to metals in pore water were associated only with the dissolved (i.e., bioavailable) fraction (EPA, 2006). All of the concentrations used in calculating EPCs for the six hardness-dependent COPECs in sediment pore water were first normalized to 100 mg/L hardness for direct comparison to their corresponding surface water benchmarks.

5.2.3 Surface water EPCs

Surface water CTE and RME EPCs (µg/L) to assess risk to aquatic receptors (i.e., water column invertebrates, fish, and amphibians) were obtained for the individual ponds (Attachments 5.18 to 5.21) and their upstream reference pond (Attachment 5.22), the main stem of Ely Brook (Attachment 5.23) and its upstream reference location (Attachment 5.24), Schoolhouse Brook (Attachment 5.25) and its upstream reference location (Attachment 5.26), and the EBOR (Attachment 5.27) and its upstream reference location (Attachment 5.28). The EPCs were calculated only for the dissolved (i.e., bioavailable) fraction (EPA, 2006). All the concentrations used in calculating EPCs for the six hardness-dependent COPECs were first normalized to 100 mg/L hardness for direct comparison to their corresponding surface water benchmarks.

5.3 CALCULATING THE FISH TISSUE EPCS FOR COMPARISON TO CBRS

CTE and RME EPCs (mg/kg ww) for fish tissues were calculated for Schoolhouse Brook and the EBOR, the only two surface water bodies supporting fish. No fish were present in the ponds or the main stem of Ely Brook. The fish EPCs were separated by individual species for comparison against the CBRs.

Attachments 5.29 and 5.30 provide the EPCs for brook trout and blacknose dace in Schoolhouse Brook, whereas Attachments 5.31 and 5.32 provide the EPCs for the same COPECs in brook trout and blacknose dace collected at the upstream reference location.

Attachments 5.33 and 5.34 provide the EPCs for brook trout and blacknose dace in the EBOR, whereas Attachment 5.35 provides the EPCs for the same COPECs in blacknose dace collected at the upstream reference location (note: no brook trout where collected from the upstream reference location).

5.4 CALCULATING THE EPCS FOR USE IN WILDLIFE EXPOSURE MODELING

5.4.1 Surface water EPCs

Surface water CTE and RME EPCs (µg/L) to assess risk to wildlife receptors were obtained for Schoolhouse Brook (Attachment 5.36) and its upstream reference location (Attachment 5.37), and the EBOR (Attachment 5.38) and its upstream reference location (Attachment 5.39).

The CTE and RME EPCs were calculated using the <u>total</u> metals data since the dose for wildlife receptors drinking surface water would be associated with this fraction. The EPCs for the hardness-dependent COPECs were <u>not</u> adjusted for hardness since this variable would not affect the toxicity of the metals after ingestion by wildlife.

5.4.2 Fish tissue EPCs

CTE and RME EPCs (mg/kg ww) for fish tissues to assess risk to wildlife receptors were calculated for Schoolhouse Brook and the EBOR, the only two surface water bodies supporting fish. No fish were present in the ponds or the main stem of Ely Brook. The fish EPCs were combined across the two species (i.e., brook trout and blacknose dace) because of the minimal size of the brook trout samples collected from Schoolhouse Brook (n = 1) and the EBOR (n = 2)..

Attachments 5.40 provides the EPCs for brook trout and blacknose dace combined in Schoolhouse Brook, whereas Attachments 5.41 provides the EPCs for the same COPECs in the combined fish collected from the upstream reference location. Attachments 5.42 provides the EPCs for brook trout and blacknose dace combined in the EBOR, whereas Attachment 5.43 provides the EPCs for the same COPECs in blacknose dace collected at the upstream reference location (note: no brook trout where collected from the upstream reference location).

5.4.3 Aquatic invertebrate EPCs

Samples of aquatic invertebrates were not collected for chemical analyses from Schoolhouse Brook or the EBOR. Yet, three of the four wildlife ROCs were assumed to feed either on aquatic life stages of benthic invertebrates (i.e., belted kingfisher) or emergent life stages of aquatic insects (i.e., tree swallow and eastern small-footed bat). The COPEC levels in invertebrates were estimated based on generic Biota-to-Sediment Accumulation Factors (BSAFs) to derive EPCs for use in wildlife food chain modeling.

BSAFs estimate how chemicals partition in organisms relative to their concentrations in colocated sediment samples. Section 3.3 in Appendix R of the Elizabeth Copper Mine BERA (URS, 2006) outlined the methods and approaches used to derive metal-specific BSAFs. **Attachment 5.44** summarizes the BSAFs used for calculating the aquatic invertebrate EPCs.

5.5 WILDLIFE FOOD CHAIN MODELING TO CALCULATE THE EDDS

Section 4 outlines the wildlife receptors evaluated in the aquatic portion of the BERA. These receptors are the tree swallow (representing insectivorous birds), the belted kingfisher (representing piscivorous birds), the eastern small-footed bat (representing insectivorous mammals and also a listed species), and the mink (representing piscivorous mammals).

5.5.1 General food web structure (based on URS, 2006)

Simplified food web models were used to calculate CTE and RME EDDs for the selected bird and mammal receptor groups by calculating exposure via ingestion of surface water and aquatic prey. The EDDs represent a dose of a COPEC that a receptor may ingest when foraging within a designated EU. The EDDs for the wildlife receptors were calculated using (1) EPCs for fish and surface water developed for each EU, (2) COPEC-specific BSAFs regression models for benthic invertebrates and emergent aquatic insects and (3) receptor-specific exposure parameters and food chain model assumptions.

The exposure routes considered by the simplified food web model for the wildlife receptors consisted of the ingestion of prey and surface water. The incidental ingestion of sediment was assumed to be negligible due to the coarse nature of the substrate in Schoolhouse Brook and the EBOR. The COPEC residues in aquatic invertebrates were estimated by multiplying the sediment concentrations by chemical-specific BSAFs. Other key exposure parameters in the model included receptor body weight, food and water ingestion rates, and an estimated area use.

The total dose (EDD_{total}) experienced by the wildlife ROCs is the sum of the doses obtained from the two primary routes of exposure, such that:

$$EDD_{total} = EDD_{diet} + EDD_{water}$$

The dose associated with each exposure route was calculated as follows:

Dose from feeding on invertebrates:

 $\mathsf{EDD}_{\mathsf{diet}} \qquad \qquad \mathsf{= IR}_{\mathsf{diet}} \; \mathsf{X} \; \mathsf{BSAF} \; \mathsf{X} \; \mathsf{C}_{\mathsf{substrate}} \; \mathsf{X} \; \mathsf{DF}_{\mathsf{i}} \; \mathsf{X} \; \mathsf{AUF} \; \mathsf{X} \; \mathsf{BAV/BW}$

Where:

EDD_{diet} = Dose of COPEC from feeding on benthic or emergent invertebrates

(mg COPEC/kg body weight [BW]/day)

IR_{diet} = ingestion rate of food (kg food/day, ww [wet weight])

BSAF = biota-sediment accumulation factor (unitless; specific to prey type and

COPEC)

C_{substrate} = CTE or RME COPEC level in the substrate (mg COPEC/kg substrate,

dw [dry weight])

DF_i = dietary fraction of food item I (unitless; proportion of food type in diet)

AUF = area use factor (unitless; receptor specific)

BAV = bioavailability adjustment factor (unitless; COPEC specific)

BW = body weight of the receptor (kg, ww)

Dose from feeding on fish:

 EDD_{diet} = $IR_{diet} X C_{fish} X DF_i X AUF X BAV/BW$

Where:

EDD_{diet} = Dose of COPEC from feeding on fish (mg COPEC/kg BW/day)

IR_{diet} = ingestion rate of food (kg food/day, ww)

C_{fish} = CTE or RME COPEC level in whole fish (mg COPEC/kg fish, ww) DF_i = dietary fraction of food item I (unitless; proportion of food type in diet)

AUF = area use factor (unitless; receptor specific)

BAV = bioavailability adjustment factor (unitless; COPEC specific)

BW = body weight of the receptor (kg, ww)

Dose from ingesting water:

 EDD_{water} = $IR_{water} \times C_{water} \times AUF/BW$

Where:

EDD_{water} = Dose of COPEC obtained from surface water (mg COPEC/kg BW/day)

IR_{water} = ingestion rate of surface water (L of water/day)

C_{water} = CTE or RME COPEC level in surface water (mg COPEC/L water)

AUF = area use factor (unitless; receptor specific)
BW = body weight of the receptor (kg, ww)

5.5.2 Exposure parameters

Attachment 5.45 provides the species-specific exposure parameters used for calculating the EDDs for the four wildlife ROCs. The following assumptions were made:

- The AUF for three of the four wildlife ROCs equaled 1.0, meaning that the entire EDD was derived
 from within each EU (the on-site ponds, Schoolhouse Brook, and the EBOR, respectively). The tree
 swallow is an exception, with an assumed AUF equal to 0.75 for each EU, based on a consensus
 reached for the Elizabeth Copper Mine BERA (see section 3.6, Appendix R, in URS, 2006).
- None of the wildlife ROCs was exposed to COPECs via the incidental ingestion of sediment while foraging in, along, or above the water ways affected by the Site.

5.5.3 Dry weight (dw) to wet weight (ww) conversion

Sediment-to-invertebrate accumulation rates (see **Attachment 5.44**) are expressed in dw. However, the fish tissue residue data are expressed in ww. It was decided to use ww in all of the calculations to avoid confusion with the units.

The estimated food ingestion rates for the four wildlife ROCs were converted from dw (calculated using the equations developed by Nagy, 2001, see **Attachment 5.45**) to ww by assuming that fish and emergent insects have a water content equal to 80% and 75%, respectively. The average water content of whole fish was obtained from Kannan et al. (1998). The average water content of invertebrates was derived from literature data summarized in **Attachment 5.46**. This attachment shows that the average water content in aquatic invertebrates (78.3%) was higher than that in terrestrial invertebrates (68.9%). The SCM assumes that eastern small-footed bats and tree swallow feed only on emergent aquatic insects. It was therefore decided to calculate the arithmetic mean of these two values (73.6%) and round the result to 75% to obtain a reasonable estimate of the water content in recently emerged terrestrial insects.

5.5.4 Bioavailability adjustment factors

BAVs provide an estimate of the fraction of the daily intake of COPECs in prey items which is biologically available to wildlife ROCs. The derivation of BAVs is outlined in the Elizabeth Copper Mine BERA in Section 3.5 in Appendix R, Sections 1.0 and 2.0 in Appendix S, and Section 5.1.2 in the main body of the text (URS, 2006). **Attachment 5.47** summarizes these BAVs which were used in the BERA.

5.5.5 Wildlife receptor EDDs

Tree swallow

Attachment 5.48 provides the RME and CTE EDD_{total} for tree swallows feeding in Schoolhouse Brook, whereas **Attachment 5.49** provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Attachment 5.50 provides the RME and CTE EDD_{total} for tree swallows feeding in the EBOR, whereas **Attachment 5.51** provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Eastern small-footed bat

Attachment 5.52 provides the RME and CTE EDD_{total} for eastern small-footed bats feeding in Schoolhouse Brook, whereas **Attachment 5.53** provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Attachment 5.54 provides the RME and CTE EDD_{total} for eastern small-footed bats feeding in the EBOR, whereas **Attachment 5.55** provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Belted kingfisher

Attachment 5.56 provides the RME and CTE EDD_{total} for belted kingfishers feeding in Schoolhouse Brook, whereas **Attachment 5.57** provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Attachment 5.58 provides the RME and CTE EDD $_{total}$ for belted kingfishers feeding in the EBOR, whereas Attachment 5.59 provides the RME and CTE EDD $_{total}$ for the same wildlife receptors feeding at the upstream reference location.

Mink

Attachment 5.60 provides the RME and CTE EDD_{total} for mink feeding in Schoolhouse Brook, whereas **Attachment 5.61** provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Attachment 5.62 provides the RME and CTE EDD_{total} for mink feeding in the EBOR, whereas Attachment 5.63 provides the RME and CTE EDD_{total} for the same wildlife receptors feeding at the upstream reference location.

Exposure Point Concentrations for Sediment COPECs in Pond 2 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			•		Exposure Poin	t Concentration
					Reasonable	Central
	Frequency of	Arithmetic	Maximum Detect	95% UCL	Maximum	Tendency
COPECs	Detection	Mean	(qualifier)*	of mean	Exposure	Exposure
Metals (mg/kg, DW)						
Barium	1 / 1	321	321	NC	321	321
Beryllium	1/1	1.8	1.8	NC	1.8	1.8
Cadmium	1 / 1	. 1.3	1.3	NC	1.3	1.3
Chromium	1 / 1	130	130	NC	130	130
Copper	1 / 1	87.6	87.6	NC	87.6	87.6
Manganese	1 / 1	769	769	NC	769	769
Molybdenum	1/1	2.6	2.6	NC	2.6	2.6
Nickel	1 / 1	45.4	45.4	NC	45.4	45.4
Selenium	1/1	1.1	1.1	NC	1.1	1.1
Silver	0/1	0.50	0.50	NC	0.50	0.50
Strontium	1 / 1	165	165	NC	165	165
Vanadium	1/1	148	148	NC	148	148
Zinc	1 / 1	131	.131	NC	131	131

mg/kg, DW = milligrams per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Sediment COPECs in Pond 3 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

· · · · · · · · · · · · · · · · · · ·					Exposure Point Concentration		
				1	Reasonable		
	Frequency of		Maximum Detect	95% UCL	Maximum	Central Tendency	
COPECs	Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure	
Metals (mg/kg, DW)			•				
Barium	1 / 1	377	377	NC	377	377	
Beryllium	1/1	1.6	1.6	NC	1.6	1.6	
Cadmium	1 / 1	1.2	1.2	NC	1.2	1.2	
Chromium	1 / 1	85.0	85.0	NC	85.0	85.0	
Copper	1/1 .	81.7	81.7	NC	81.7	81.7	
Lead	1/1	43.7	43.7	NC	43.7	43.7	
Manganese	1/1	3130	3130	NC	3130	3130	
Molybdenum	1/1	2.2	2.2	NC	2.2	2.2	
Nickel	1/1	38.6	38.6	NC	38.6	38.6	
Selenium	1 / 1	1.4	1.4	NC	1.4	1.4	
Silver	0 / 1	0.50	0.50	NC	0.50	0.50	
Strontium	1 / 1	134	134	NC	134	134	
Vanadium	1 / 1	125	125	NC	125	125	
Zinc	1 / 1	127	127	NC	127	127	

mg/kg, DW = milligrams per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations Sediment COPECs in Pond 4

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		· · · · · · · · · · · · · · · · · · ·			Exposure Po	int Concentration
					Reasonable	
		Arithmetic	Maximum Detect	95% UCL of	Maximum	Central Tendency
COPECs	Frequency of Detection	Mean	(qualifier)*	mean	Exposure	Exposure
Metals (mg/kg, DW)						
Barium	2/2	219	337	NC	337	219
Beryllium	1 / 2	1.1	1.6	NC	1.6	1.1
Cadmium	2 / 2	. 1.8	2.5	NC	2.5	1.8
Chromium	2/2	63.5	67.0	NC	67.0	63.5
Copper	2 / 2	390	400	NC	400	390
Manganese	2 / 2	1665	2410	NC	2410	1665
Molybdenum	2 / 2	1.4	1.8	NC	1.8	1.4
Nickel	2 / 2	58.6	61.1	NC	61.1	58.6
Selenium	2/2	1.0	1.3 J	NC	1.3	1.0
Silver	0 / 2	0.85	1.2	NC	1.2	0.85
Strontium	1 / 1	46.0	91.9	NC	91.9	46.0
Thallium	0 / 1	0.60	1.2	NC	1.2	0.60
Vanadium	. 2 / 2	75.5	93.0	NC	93.0	75.5
Zinc	2 / 2	318	320 J	NC	320	318

mg/kg, DW = milligrams per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

J - estimated value

NC - Not calculated because of small sample size

* - Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Sediment COPECs in Pond 5 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	T ·	1			Exposure Point Concentration		
					Reasonable		
	Frequency of	Arithmetic	Maximum Detect	95% UCL	Maximum	Central Tendency	
COPECs	Detection	Mean	(qualifier)*	of mean	Exposure	Exposure	
Metals (mg/kg, DW)	. •				•		
Barium	1/1	296	296	NC	296	296	
Beryllium	1 / 1	1.6	1.6	NC	1.6	1.6	
Cadmium	1/1 .	4.0	4.0	NC	4.0	4.0	
Chromium	1/1	70.0	70.0	NC	70.0	70.0	
Cobalt .	1/1	78.3	78.3	NC	78.3	78.3	
Copper	1/1	3540	3540	NC	3540	3540	
Manganese	1 / 1	1430	1430	NC	1430	1430	
Molybdenum	1 / 1	2.5	2.5	NC	2.5	2.5	
Nickel	1/1	56.8	56.8	NC	56.8	56.8	
Selenium	1/1	1.3	1.3	NC	1.3	1.3	
Silver	0 / 1	0.50	0.50	NC	0.50	0.50	
Strontium	. 1/1	76.5	76.5	NC	76.5	76.5	
Tin	1/1	1.6	1.6	NC	1.6	1.6	
Vanadium	1/1	79.0	79.0	NC	79.0	79.0	
Zinc	1/1	507	507	NC	507	507	

mg/kg, DW = milligrams per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Pond (Pond 1) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point Concentration	
COPECs	Frequency of Maximum Detect Detection Arithmetic Mean (qualifier)*		95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Total (mg/kg, DW)						
Barium	2/2	175	276	NC	276	175
Beryllium	1 / 2	1.2	1.8	NC .	1.8	1.2
Cadmium	1/2	0.98	0.80	NC	0.80	1.0
Chromium	2/2	71.0	102	NC	102	71.0
Cobalt	2/2	16.4	19.8	NC	19.8	16.4
Copper	2/2	65.3	86.6	NC	86.6	65.3
Lead	2/2	17.0	26.4	NC	26.4	17.0
Manganese	2/2	339	527	NC	527	339
Molybdenum	2/2	0.62	0.63	NC	0.63	0.62
Nickel	2/2	30.3	35.6	NC	. 35.6	30.3
Selenium	2/2	0.72	0.74 J	NC	0.74	0.72
Silver	0/2	0.83	0.58	NC	0.58	0.83
Strontium	1/1	86.0	172	NC	172	86.0
Tin	1/2	2.08	3.0	NC	3.0	2.1
Vanadium	1/1	81.5	163	NC	163	81.5
Zinc	2/2	88.0	126	NC	. 126	88.0

mg/kg, DW = milligrams per kilogram dry weight

Note: The metals shown in this Attachment are those identified as sediment COPECs in Ponds 2, 3, 4, and 5. Thallium was not analyzed for in Pond 1.

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size.

J - estimated value

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Sediment COPECs in the Main Stem of Ely Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				95% UCL of mean ¹			of mean ¹	Exposure Point Concentration		
							·	Reasonable		
	Frequency of		Maximum Det	ect				Maximum	Central Tendency	
COPECs	Detection	Arithmetic Mean	(qualifier)	V:	alue	Distribution	UCL ₉₅ method	Exposure	Exposure	
Metals (mg/kg, DW)										
Barium	32 / 32	66.0	236	1	115	NP	95% Chebyshev	115	66.0	
Beryllium	7/32	0.62	2.0		NC	***		2.0	0.62	
Cadmium	9/12	1.5	3.2 J	4	40.0	G	95% Approx Gamma	3.2	1.5	
Chromium	32 / 32	32.8	83.0		NC			83.0	32.8	
Cobalt	32 / 32	21.5	140	4	45.6	NP	95% Chebyshev	45.6	21.5	
Copper	. 32 / 32	3101	6600	3	3873	G	95% Approx Gamma	3873	3101	
Iron	32 / 32	125288	400000	14	11841	G	95% Approx Gamma	141841	125288	
Lead	30 / 32	29.3	174	4	40.2	G	95% KM (BCA)	40.2	29.3	
Manganese	32 / 32	298	2080	1	249	NP	99% Chebyshev	1249	298	
Molybdenum	30 / 30	10.9	26.0	1	12.7	N	95% Student's-t	12.7	10.9	
Nickel	. 31 / 32	9.5	35.0	1	14.9	G	95% KM (Chebyshev)	14.9	9.5	
Selenium	30 / 30	28.5	44.0	3	31.8	N	95% Student's-t	31.8	28.5	
Silver	27 / 31	3.2	13.0 J		3.9	G	95% KM (BCA)	3.9	3.2	
Strontium	6/6	88.0	123	1	NC		Annual control control control control of the contr	123	88.0	
Thallium	7/26	5.3	3.3 J		NC	men energy and the second seco	a kina in alan ana ana ana ana ana ana ana ana a	3.3	5.3	
Vanadium	32 / 32	61.0	112	6	69.6	G	95% Approx Gamma	69.6	61.0	
Zinc	32 / 32	110	410		132	LN	95% Modified-t	132	110	

mg/kg, DW = milligram per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

1 - Statistics were performed using Pro UCL Software version 4.0.02

NC - Not calculated because of small sample size

Qualifier Definitions:

J - estimated value

Distribution

NC -Not Calculated because of the small number of detects

NP- non parametric

G- gamma

LN- lognormal

N- normal

Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Section of the Main Stem of Ely Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			· · · · · · · · · · · · · · · · · · ·				Exposure Po	int Concentration
					95% UCL	. of mean	Reasonable	
	Frequency of		Maximum Detect		·		Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	Value	Distribution	Method	Exposure	Exposure
Metals (mg/kg, DW)						•		
Barium	13 / 13	106	255	159	G	95% Approx Gamma	159	106
Beryllium	3 / 13	0.74	1.6	NC			1.6	0.74
Cadmium	6 / 13	0.75	0.83	- NC			0.83	0.75
Chromium	13 / 13	38.5	66.0	46.8	N	95% Student's-t	46.8	38.5
Cobalt	13 / 13	14.4	25.0	17.3	N	95% Student's-t	17.3	14.4
Copper	13 / 13	343	1230	693	G	95% Approx Gamma	693	343
Iron	12 / 12	16973	29000	21035	N	95% Student's-t	21035	16973
Lead	11 / 13	10.7	24.8	14.0	N	95% KM (t)	14.0	10.7
Manganese	13 / 13	789	2200	1667	NP	95% Chebyshev	1667	789
Molybdenum	11 / 11	0.87	3.9	2.4	NP	95% Chebyshev	2.4	0.87
Nickel -	13 / 13	22.8	44.0	27.1	N	95% Student's-t	27.1	22.8
Selenium	11 / 13	2.2	4.1	2.4	G.	95% KM (BCA)	2.4	2.2
Silver	0 / 13	0.96	2.1	NC	And and		2.1	1.0
Strontium	3/3	120	133	NC		- commente de el la rec'hant land a manazan and rec'h rec'h a mand a el la card ende de c'h fan and da en el de fan and	133	120
Thallium	0 / 10	5.8	27.5	NC			27.5	5.8
Vanadium	13 / 13	44.1	96.0	58.8	G	95% Approx Gamma	58.8	· 44.1
Zinc	12 / 13	66.8	139	85.4	G	95% KM (BCA)	85.4	66.8

Note: The metals shown in this Attachment are those identified as sediment COPECs in the main stem of Ely Brook.

mg/kg, DW = milligram per kilogram Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

* - If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

NC - Not calculated because of the small number of detects

Distribution

NP - non parametric

G - gamma

N - normal

Exposure Point Concentrations for Sediment COPECs in School House Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					95% UCI	_ of mean ¹	Exposure Point Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure
Metals (mg/kg, DW)								
Arsenic	31 / 34	2.0	12.0	2.8	NP	95% KM (Chebyshev)	2.8	2.0
Barium	34 / 34	62.1	199	106	NP	95% Chebyshev	106	62.1
Beryllium	7 / 34	0.56	2.0	1.6	NP ·	95% KM (BCA)	1.6	0.56
Chromium	34 / 34	19.8	85.0	23.3	G	95% Approx. Gamma	23.3	19.8
Cobalt	34 / 34	13.5	93.0	24.7	NP	95% Chebyshev	24.7	13.5
Copper	34 / 34	300	1390	489	NP	95% Chebyshev	489	300
Manganese	34 / 34	442	1400	655	NP	95% Chebyshev	655	442
Molybdenum	29 / 30	1.2	7.3	2.3	G	95% KM (Chebyshev)	2.3	1.2
Selenium	29 / 33	2.3	9.8	2.8	G	95% KM (BCA)	2.8	2.3
Strontium	6/6	194	228	212	N	95% Student's-t	212	194
Vanadium	34 / 35	23.5	62.0	34.3	NP	95% Chebyshev	34.3	23.5
Zinc	34 / 34	57.4	130 J	64.3	G	95% Approx. Gamma	64.3	57.4

mg/kg, DW - milligrams per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

J - estimated value

1- Statistics were performed using Pro UCL software version 4.0.02

Distribution

NP - non parametric

G - gamma

LN - lognormal

N - normal

Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					95% UCL c	f mean ¹	Exposure Po	int Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure
Metals (mg/kg, DW)								
Arsenic	8 / 12	2.2	3.0	NC			3.0	2.2
Barium	11 / 11	64.7	207	148	NP	95% Chebyshev	148	64.7
Beryllium	3 / 11	0.60	2.0	NC			2.0	0.60
Chromium	11 / 11	23.1	88.0	52.0	NP	95% Chebyshev	52.0	23.1
Cobalt	11 / 11	5.0	8.4	6.0	NP	95% Student's-t	6.0	5.0
Copper	11 / 11	10.5	24.0	14.6	G	95% Approx Gamma	14.6	10.5
Manganese	11 / 11	442	1130	599	G	95% Approx Gamma	599	442
Molybdenum	5 / 7	0.55	0.28	NC	***		0.28	0.55
Selenium	1 / 5	0.70	· 0.30 J	NC			0.30	0.70
Strontium	2 / 2	230	257	NC			257	230
Vanadium	11 / 11	21.5	53.0	29.7	G	95% Approx Gamma	29.7	21.5
Zinc	11 / 11	28.8	72.0 J	40.1	G	95% Gamma	40.1	28.8

Note: The metals shown in this Attachment are those identified as sediment COPECs in the impacted section of School House Brook,

mg/kg, DW - milligrams per kilogram, Dry Weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

- * If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)
- 1 Statistics were performed using Pro UCL Software version 4.0.02
- J estimated value

NC - Not calculated because of the small number of detects.

Distribution

NP - Non parametric

G - Gamma

Exposure Point Concentrations for Sediment COPECs in the EBOR $\,$

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

							Exposure Poir	nt Concentration
			Maximum		95% (UCL of mean ¹	Reasonable	Central
	Frequency of	Arithmetic	Detect				Maximum	Tendency
COPECs	Detection	Mean	(qualifier)*	Value	Distribution	Method	Exposure	Exposure
Metals, Total (mg/kg, DW)								
Barium	17 / 17	46.3	195	90.0	NP	95% Chebyshev	90.0	46.3
Beryllium	4 / 17	0.40	1.8	NC			1.8	0.40
Copper	17 / 17	76.3	260	127	G	95% Approx. Gamma	127	76.3
Manganese	17 / 17	355	1120	475	LN	95% H-UCL	475	355
Molybdenum	8 / 10	0.92	1.1 J	NC			1.1	0.92
Selenium	3 / 17	1.6	0.81 J	NC			0.81	1.6
Silver	2 / 17	0.72	0.57 J	NC			0.57	0.72
Strontium	1 / 1	193	193	NC			193	193
Thallium	0 / 16	4.5	13.8	NC			13.8	4.5
Zinc	17 / 17	43.6	125	58.7	G ·	95% Approx. Gamma	58.7	43.6

mg/kg, DW - milligrams per kilogram, Dry Weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

1 - Statistics were performed using Pro UCL Software version 4.0.02.

NC -Not Calculated because of the small number of detects or small sample size.

Qualifier Definitions:

J = estimated value

Distribution

NP - non parametric

G - gamma

LN - lognormal

^{*-} If sample was not detected, value represents one half of the maximum non-detect Reporting Limit (RL).

Exposure Point Concentrations for Sediment COPECs in the Upstream Reference Section of the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Poir	nt Concentration
	F	A!4 la 4!	Maximum		Reasonable	Central
	Frequency of	Arithmetic	Detect		Maximum _	Tendency
COPECs	Detection	Mean	(qualifier)*	95% UCL of mean	Exposure	Exposure
Metals (mg/kg, DW)					•	
Barium	3 / 3	79.4	187	NC	187	79.4
Beryllium	2/3	0.75	1.6	NC	1.6	0.75
Copper	2/3	3.2	4.5	NC NC	4.5	3.2
Manganese	3 / 3	278	475	NC NC	475	278
Molybdenum	1/1	0.16	0.16	NC NC	0.16	0.16
Selenium	0/3	1.8	5.0	NC	5.0	1.8
Silver	1/3	0.76	0.28 J	NC .	0.28	0.76
Strontium	1 / 1	198	198	NC NC	198	198
Thallium	0 / 2	9.1	17.5	NC	17.5	9.1
Zinc	3 / 3	22.2	33.0	NC NC	33.0	22.2

Note: The metals shown in this Attachment are those identified as sediment COPECs in the impacted section of the EBOR

mg/kg, DW - milligrams per kilogram, dry weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

J = estimated value

^{*=} If sample was not detected, value represents one half of the maximum non-detect Reporting Limit (RL)

Exposure Point Concentrations for Pore Water COPECs in the Main Stem of Ely Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point Concentrat		
	Frequency of		Maximum Detect	95% UCL	Reasonable Maximum	Central Tendency	
COPECs	Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure	
Metals, Dissolved (ug/L)							
Aluminum	6 / 6	95.1	456	NC	456	95.1	
Arsenic	0 / 6	100	100	NC	100	100	
Beryllium	0 / 6	5.0	5.0	NC	5.0	5.0	
Cadmium	6 / 6	0.45	2.0	NC	2.0	0.45	
Cobalt	6 / 6	32.5	95.0	NC	95.0	32.5	
Copper	6 / 6	45.6	131	NC	131	45.6	
Manganese	6 / 6	1782	6590 ·	NC	6590	1782	
Mercury	0 / 2	2.5	2.5	NC	2.5	2.5	
Strontium	6 / 6	97.5	212	NC	212	97.5	
Zinc	6 / 6	31.6	126	NC	126	31.6	

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Pore Water COPECs in the Upstream Reference Section of the Main Stem of Ely Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	int Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure
Metals, Dissolved (ug/L)	·					
Aluminum	3 / 3	35.1	88.8	NC	88.8	35.1
Arsenic	0 / 3	100	100	NC	100	100
Beryllium	0/3	5.0	5.0	NC	5.0	5.0
Cadmium	2/3	2.2	0.73	NC	0.73	2.2
Cobalt	2/3	2.0	0.55	NC	0.55	2.0
Copper	· 3/3	3.6	6.2	NC	6.2	3.6
Manganese	3/3	1019	3000	NC	3000	1019
Mercury	0 / 1	2.5	2.5	NC	2.5	2.5
Strontium	3 / 3	133	258	NC	258	133
Zinc .	3 / 3	5.6	12.8	NC	12.8	5.6

Note 1: the metals shown in this Attachment are those identified as pore water COPECS in the impacted section of the main stem of Ely Brook.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

Exposure Point Concentrations for Pore Water COPECs in School House Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point Concentration		
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of the Mean	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Dissolved (ug/L)							
Aluminum	9/9	44.0	202	NC	202	44.0	
Arsenic	0/9	100	100	NC	100	100	
Beryllium	0/9	5.0	5.0	NC	5.0	5.0	
Cadmium	9/9	0.11	0.30	NC	0.30	0.11	
Copper	9/9	8.8	25.0	NC	25.0	8.8	
Manganese	9/9	589	2030	NC	2030	589	
Selenium	8/9	4.3	7.4	NC	7.4	4.3	
Thallium	7/9	266	470	NC	470	266	
Zinc	2/9	19.1	149	NC	149	19.1	

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

Exposure Point Concentrations for Pore Water COPECs in the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	oint Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of the Mean	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Dissolved (ug/L)							
Aluminum	3 / 3	40.1	98.0	NC	98.0	40.1	
Arsenic	0/3	100	100	NC	100	100	
Beryllium	0/3	5.0	5.0	NC	5.0	5.0	
Cadmium	2/5	0.84	0.02	NC	0.02	0.84	
Copper	2/5	1.9	0.58	NC	0.58	1.9	
Manganese	3 / 3	1336	4000	NC	4000	1336	
Selenium	0/3	0.50	0.50	NC	0.50	0.50	
Thallium	1/3	0.10	0.20	NC	0.20	0.10	
Zinc	3 / 5	1.4	2.2	NC ·	2.2	1.4	

Note 1: the metals shown in this Attachment are those identified as pore water COPECS in the impacted section of School House Brook.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs. ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of the small sample size.

Created by: RAR 6/9/2008 QC'd by: EK 6/12/2008

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

Exposure Point Concentrations for Pore Water COPECs in the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure
Metals, Dissolved (ug/L)	-					·
Arsenic	0/3	100	100	NC	100	100
Beryllium	0/3	5.0	5.0	NC	5.0	5.0
Manganese	3 / 3	1918	3700	NC	3700	1918
Mercury	. 0 / 1	2.5	2.5	NC ·	2.5	2.5

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

ug/L = micrograms per liter

95% UCL - Upper Confidence Limit of mean concentration

NC - Not Calculated because of the small sample size.

Created by: RAR 6/6/2008

QC'd by: EK 6/12/2008

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Pore Water COPECs in the Upstream Reference Section of the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

				95% UCL of mean	Exposure Point Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*		Reasonable Maximum Exposure	Central Tendency Exposure
Metals, Dissolved (ug/L)						
Arsenic	0/3	100	100	NC	100	100
Beryllium	0/3	5.0	5.0	NC	5.0	5.0
Manganese	2/3	2347	6830	NC	6830	2347
Mercury	0 / 1	2.5	2.5	NC	2.5	2.5

Note: the metals shown in this Attachment are those identified as pore water COPECS in the impacted section of the EBOR

COPECs - Chemicals of Potential Ecological Concern

ug/L = micrograms per liter

95% UCL - Upper Confidence Limit of mean concentration

NC - Not Calculated because of the small sample size.

Created by: RAR 6/6/2008 QC'd by: EK 6/12/2008

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

Exposure Point Concentrations for Surface Water COPECs in Pond 2 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point Concentration	
	Frequency of		Maximum Detect	1 1	Reasonable Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure
Metals, Dissolved (ug/L)						
Beryllium	0/6	5.0	5.0	NC	5.0	5.0
Copper	6/6	10.6	41.8	NC	41.8	10.6
Manganese	6/6	533	1400	NC	1400	533
Silver	3 / 6	6.7	0.49	NC	0.49	6.7
Zinc	6/6	66.8	171	NC	171	66.8

COPECs - Chemicals of Potential Ecological Concern

Note: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs. ug/L = micrograms per liter

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents 1/2 of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Surface Water COPECs in Pond 3 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	oint Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Dissolved (ug/L)							
Arsenic	0 / 1	100	100	NC	100	100	
Beryllium	0 / 1	5.0	5.0	NC	5.0	5.0	
Cadmium	0 / 1	6.5	6.5	NC	6.5	6.5	
Chromium	0 / 1	14.4	14.4	NC	14.4	14.4	
Manganese	1 / 1	444	444	NC	444	444	
Silver	1 / 1	46.2	46.2	NC	46.2	46.2	

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Surface Water COPECs in Pond 4 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	int Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Expsoure	Central Tendency Exposure
Metals, Dissolved (ug/L)				·		٠
Arsenic	0 / 8	20.8	100	NC	100	20.8
Beryllium	0/9	3.6	5.0	NC	5.0	3.6
Copper	8 / 10	29.6	64.0	NC	64.0	29.6
Manganese	10 / 10	98.3	212	NC	212	98.3
Selenium	0 / 10	9.1	22.5	NC	22.5	9.1
Silver	0 / 10	48.6	109	NC	109	48.6
Thallium	0 / 10	9.0	22.5	NC	22.5	9.0
Zinc	8 / 10	89.9	186	NC	186	89.9

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size or small number of detects.

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Surface Water COPECs in Pond 5 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	int Concentration
·			Maximum	0.707.1101	Reasonable	
	Frequency of		Detect	95% UCL	Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure
Metals, Dissolved (ug/L)						
Arsenic	0 / 4	33.3	100	NC	100	33.3
Beryllium	0 / 4	4.6	5.0	NC	5.0	4.6
Cadmium	1/4	11.1	1.9	NC	1.9	11.1
Chromium	0 / 4	26.1	35.3	NC	35.3	26.1
Cobalt	1 / 4	14.3	24	NC	24.0	14.3
Copper	4/4	446	670	NC	670	446
Lead	0 / 4	61.1	74.3	NC	74.3	61.1
Manganese	4 / 4	194	425	NC	425	194
Selenium	0 / 4	8.4	11	NC	11.0	8.4
Silver	0 / 4	41	63.7	NC	63.7	41.0
Thallium	0 / 4	11.1	22.5	NC	22.5	11.1
Zinc	4/4	318	376	NC	376	318

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

Note: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Pond (Pond 1) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	int Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure
Metals, Dissolved (ug/L)						۸
Arsenic	1/8	20.8	0.13	NC	0.13	20.8
Beryllium	0/8	4.1	5.0	NC	5.0	4.1
Cadmium	0/8	17.0	22.9	NC	22.9	17.0
Chromium	1/8	38.7	0.60	NC	0.60	38.7
Cobalt	2/8	8.3	0.06	NC	0.06	8.3
Copper	2/8	39.2	4.6	NC	4.6	39.2
Lead	2/8	82.3	0.75	NC	0.75	82.3
Manganese	2/8	9.9	. 10.1	· NC	10.1	9.9
Selenium	0/8	11.3	22.5	NC	22.5	11.3
Silver	0/8	97.8	150	NC	150	97.8
Thallium	0/8	11.2	22.5	NC	22.5	11.2
Zinc	5/8	92.8	199	NC	199	92.8

Note 1: The metals shown in this Attachment are those identified as surface water COPECs in Ponds 2, 3, 4, and 5.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

* - Value represents the maximum non-detect reporting limit (RL), if chemical was not detected.

95% UCL - 95% Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size.

Created by: RAR 4/1/2008 QC'd : EK 4/4/2008

Exposure Point Concentrations for Surface Water COPECs in Ely Brook (Aquatic Receptors)

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

							Exposure Po	int Concentration
	Frequency of		Maximum Detect	95% UCL of mean ¹		Reasonable Maximum	Central Tendency	
COPECs	Detection	Arithmetic Mean	(qualifier)	Values Distribution Method		Exposure	Exposure	
Metals, Dissolved (ug/L)								
Aluminum	34 / 34	5964	34000	18580	NP	99% Chebyshev	18580	5964
Cadmium	33 / 34	3.3	8.7	5.1	G	95% KM Chebyshev	3.3	5.1
Chromium	30 / 35	4.4	15.1	5.1	G	95% KM (BCA)	4.4	5.1
Cobalt	35 / 35	98.4	664	334	NP	99% Chebyshev	98.4	334
Copper	35 / 35	2532	6628	5530	NP	99% Chebyshev	2532	5530
Iron	32 / 35	9762	74600	39994	NP	99% KM Chebyshev	9762	39994
Manganese	35 / 35	562	3100	1034	LN	95% H-UCL	562	1034
Nickel	35 / 35	29.9	67.9	34.9	, N	95% Student's-t	29.9	34.9
Silver	7 / 35	2.1	0.69	NC	<u></u> .	= =	2.1	0.69
Zinc	34 / 34	496	1213	588	N	95% Student's-t	496	588

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

1 - Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of the small number of detects.

Distribution

NP - non parametric

G - gamma

LN - lognormal

Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Portion of the Main Stem of Ely Brook (Aquatic Receptors) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				,			Exposure Po	int Concentration
	Frequency of		Maximum Detect	,	95% UCL of mean ¹		Reasonable Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	Values	Distribution	Method	Exposure	Exposure
Metals, Dissolved (ug/L)								
Aluminum	9 / 10	15.2	35.0	NC			35.0	15.2
Cadmium	0 / 10	5.0	10.5	NC			10.5	5.0
Chromium	4 / 10	10.6	0.73	NC			0.73	10.6
Cobalt	4 / 10	2.0	0.14	NC			0.14	2.0
Copper	8 / 10	7.7	29.5	NC		\$\rightarrow\rightarro	29.5	7.7
Iron	8 / 10	17.9	30.0	NC			30.0	17.9
Manganese	10 / 10	23.6	136	175	NP	99% Chebyshev	136.0	23.6
Nickel	8 / 10	5.5	1.9	NC		Tarangan kalungan ka	1.9	5.5
Silver	2 / 10	5.9	0.25	NC			0.25	5.9
Zinc	10 / 10	50.0	137	77.6	N	95% Student's-t	77.6	50.0

Note 1: the metals shown in this Attachment are those identified as surface water COPECS in the impacted section of the main stem of Ely Brook.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

- * Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.
- 1 Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of a small sample size or small number of detects

Distribution

NP - non parametric

Exposure Point Concentrations for Surface Water COPECs in School House Brook (Aquatic Receptors)

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		-			95% UCL of	the Mean ¹	Exposure Point Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure
Metals, Dissolved (ug/L)								
Aluminum	36 / 36	87.8	180	97.3	N ·	95% Student's-t	97.3	87.8
Barium	36 / 36	37.9	325	87.2	NP	95% Chebyshev	87.2	37.9
Cadmium	24 / 44	0.58	0.82	0.23	G	95% KM (t)	0.23	0.58
Copper	9 / 44	74.5	203	112	G .	95% KM Chebyshev	112	74.5
Zinc	35 / 37	40.8	211	69.9	LN	95% H-UCL	69.9	40.8

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

Note: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

1 - Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

Distribution

NP - non parametric

G - gamma

LN - lognormal

Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Section of School House Brook (Aquatic Receptors) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					95% UCL c	of the Mean ¹	Exposure Point Concentration		
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Dissolved (ug/L)						· · · · · · · · · · · · · · · · · · ·			
Aluminum	11 / 13	21.7	104	75.5	NP	97.5% KM (Chebyshev)	75.5	21.7	
Barium	13 / 13	55.5	325	159	NP	95% Chebyshev	159	55.5	
Cadmium	0 / 16	2.4	7.8	NC			7.8	2.4	
Copper	7 / 16	4.7	1.2	NC			1.2	4.7	
Zinc	12 / 13	32.4	147	86.7	G	95% KM (Chebyshev)	86.7	32.4	

Note 1: the metals shown in this Attachment are those identified as surface water COPECS in the impacted section of School House Brook.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

1 - Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of the small number of detects

Distribution

NP - non parametric

G - gamma

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

Exposure Point Concentrations for Surface Water COPECs in the EBOR (Aquatic Receptors)

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					95% UCL o	of mean ¹	Exposure Po	Exposure Point Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Dissolved (ug/L)				1					
Aluminum	26 / 29	39.1	122 J	47.5	G	95% KM (BCA)	47.5	39.1	
Barium	29 / 29	68.7	374	281.7	NP	99% Chebyshev	282	68.7	
Copper	28 / 29	14.1	76.3	28.6	· G	95% KM (Chebyshev)	28.6	14.1	
Lead	8 / 29	20.4	3.6 J	NC		handing and study the seast (1 th for property common property by the first A of a man to be and read from the foreign and provide and read-seast study and from the seast study and from the seast study and from the seast study and the seast study	3.6	20.4	
Manganese	29 / 29	18.1	160	40.9	NP	95% Chebyshev	40.9	18.1	
Silver	4 / 29	3.1	0.43 J	NC	est est		0.43	3.1	
Zinc	29 / 29	809	9100	4731	NP	99% Chebyshev	4731	809	

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

ug/L = micrograms per liter

1 - Statistics were performed using Pro UCL Software version 4.0.02

Distributions

95% UCL - Upper Confidence Limit of mean concentration

NP - Non parametric

NC - Not Calculated because of the small number of detects

G - Gamma

Qualifier Definitions:

J - estimated value

Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Section of the EBOR (Aquatic Receptors) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					95% UCL o	f mean ¹	Exposure Po	Exposure Point Concentration	
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect Concentration (qualifier)*	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure	
Metals, Dissolved (ug/L)			·						
Aluminum	10 / 10	15.3	80.4 J	47.1	G	95% KM (BCA)	47.1	15.3	
Barium	10 / 10	62.6	296	180	NP	95% chebyshev	180	62.6	
Copper	2 / 10	4.2	0.96	NC	May 1940		1.0	4.2	
Lead	1 / 10	24.3	0.09	NC			0.09	24.3	
Manganese	10 / 10	10.3	29.0	15.0	N	95% Student's-t	15.0	10.3	
Silver	4 / 10	0.54	0.08	NC			0.08	0.54	
Zinc	10 / 10	23	86.8	54.6	G	95% Approx Gamma	54.6	22.6	

Note: the metals shown in this Attachment are those identified as surface water COPECS in the impacted section of the EBOR

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

ug/L = micrograms per liter

1 - Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

NC - Not Calculated because of the small number of detects

Qualifier Definitions:

J - estimated value

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL)

Exposure Point Concentrations for Brook Trout Tissue Residues from School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	oint Concentration
,					Reasonable	
			Maximum Detect	95% UCL	Maximum	Central Tendency
COPECs	Frequency of Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure
Metals (mg/kg, wwt)						
Aluminium	1 / 1	12.4	12.4	NC	12.4	12.4
Barium	1 / 1	0.30	0.30	NC	0.30	0.30
Beryllium	0 / 1	0.01	0.01	NC	0.01	0.01
Cadmium	1 / 1	0.02	0.02	NC	0.02	0.02
Chromium .	1 / 1	0.30	0.30	NC	0.30	0.30
Cobalt	1 / 1	0.10	• 0.10	NC	0.10	0.10
Copper	1 / 1	7.9	7.9	NC	7.9	7.9
Iron	1 / 1	46.9	46.9	NC	46.9	46.9
Lead	1 / 1	0.02	0.02	NC	0.02	0.02
Manganese	1 / 1	2.9	2.9	NC	2.9	2.9
Mercury	1 / 1	0.003	0.003.	NC	0.003	0.003
Molybdenum	0 / 1	0.15	0.15	NC	0.15	0.15
Selenium	1 / 1	0.30	. 0.30	NC	0.30	0.30
Thallium	0 / 1	0.02	0.02	NC	0.02	0.02
Vanadium	0 / 1	0.10	0.10	NC	0.10	0.10
Zinc	1 / 1	18.8	18.8	NC	18.8	18.8

mg/kg, wwt - milligram per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Blacknose Dace Tissue Residues from School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure P	oint Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure
Metals (mg/kg, wwt)						
Aluminium	8 / 8	4.8	11.5	NC	11.5	4.8
Antimony	4 / 8	0.13	0.4	NC	0.40	0.13
Barium	. 8 / 8	2.0	2.3	NC	2.3	2.0
Beryllium	0/8	0.01	0.01	NC	0.01	0.01
Cadmium	8 / 8	0.04	0.07	NC	0.07	0.04
Chromium	8/8	0.39	0.5	NC	0.50	0.39
Cobalt	8 / 8	0.05	0.11	NC	0.11	0.05
Copper	8 / 8	4.2	5.9	NC	5.9	4.2
Iron	8 / 8	33.2	44.7	NC NC	44.7	33.2
Lead	8 / 8	0.16	1.17	NC	1.2	0.16
Manganese	8 / 8	3.7	4.2	NC	4.2	3.7
Mercury	8 / 8	0.01	0.02	NC	0.02	0.01
Molybdenum	0 / 8	0.15	0.15	NC	0.15	0.15
Nickel	8 / 8	0.19	0.2	NC	0.20	0.19
Selenium	8 / 8	0.43	0.5	NC	0.50	0.43
Thallium .	0/8	0.02	0.02	NC	0.02	0.02
Vanadium	2/8	0.10	0.1	NC	0.10	0.10
Zinc	8 / 8	36.1	40.9	NC	40.9	36.1

mg/kg, wwt = milligram per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Brook Trout Tissue Residues from the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	oint Concentration
	Frequency of		Maximum Detect	95% UCL	Reasonable	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	of mean	Maximum	Exposure
Metals (mg/kg, wwt)						
Aluminium	5/5	4.8	6.9	NC	6.9	4.8
Barium	5 / 5	0.37	0.48	NC	0.48	0.37
Beryllium	0 / 5	0.01	0.01	NC	0.01	0.01
Cadmium	5 / 5	0.05	0.08	NC	0.08	0.05
Chromium	5 / 5	0.44	0.60	NC	0.60	0.44
Cobalt	5 / 5	0.05	0.06	NC	0.06	0.05
Copper	5 / 5	1.6	1.9	NC	1,9	1.6
Iron	5 / 5	32.9	36.0	NC	36.0	32.9
Lead	5 / 5	0.03	0.06	NC	0.06	0.03
Manganese	. 5/5	3.1	3.7	NC	3.7	3.1
Mercury	5 / 5	0.01	0.01	NC	0.01	0.01
Molybdenum	0 / 5	0.15	0.15	NC	0.15	0.15
Selenium	5 / 5	0.50	, 0.60	NC	0.60	0.50
Thallium	0 / 5	0.02	0.02	NC	0.02	0.02
Vanadium	2 / 5	0.12	0.20	NC	0.20	0.12
Zinc	5 / 5	21.5	23.2	NC ·	23.2	21.5

Note: The metals shown in this Attachment are those identified as tissue COPECs for brook trout in the impacted section of School House Brook.

mg/kg, wwt - milligram per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Blacknose Dace Tissue Residues from the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	oint Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure
Metals (mg/kg, wwt)						·
Aluminium	2/2	20.7	26.5	NC	26.5	20.7
Antimony	0/2	0.05	0.05	NC	0.05	0.05
Barium	2/2	1.1	1.1	NC	1.1	1.1
Beryllium	0 / 2	0.01	0.01	NC	0.01	0.01
Cadmium	2/2	0.06	0.06	NC	0.06	0.06
Chromium	2/2	0.50	0.50	NC	0.50	0.50
Cobalt	2/2	, 0.04	0.04	NC	0.04	0.04
Copper	2/2	1.0	1.0	NC	1.0	1.0
Iron	2/2	52.8	60.5	NC	60.5	52.8
Lead ·	2/2	0.05	0.05	NC	0.05	0.05
Manganese	2/2	5.7	6.1	NC	6.1	5.7
Mercury	2/2	0.02	0.02	NC	0.02	0.02
Molybdenum	0 / 2	0.15	0.15	NC	0.15	0.15
Nickel	2/2	0.20	0.20	NC	0.20	0.20
Selenium	2/2	0.70	0.70	NC	0.70	0.70
Thallium	0/2	0.02	0.02	NC	0.02	0.02
Vanadium	2/2	0.20	0.20	NC	0.20	0.20
Zinc	2/2	31.8	33.9	NC	33.9	31.8

Note: The metals shown in this Attachment are those identified as tissue COPECs for blacknose dace in the impacted section of School House Brook. mg/kg, wwt = milligram per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size.

Created by: EK 2/28/2008 QC'd: RAR 5/15/2008

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Brook Trout Tissue Residues from EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point	Concentration
	Frequency of		Maximum Detect	95% UCL	Reasonable Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure
Metals (mg/kg, wwt)		·				
Aluminum	2/2	2.3	3.4	NC	3.4	2.3
Barium	2/2	0.48	0.51	NC	0.51	0.48
Beryllium	0/2	0.01	0.01	NC	0.01	0.01
Cadmium	2/2	0.02	0.03	NC	0.03	0.02
Chromium	1 / 2	0.23	0.30	NC	0.30	0.23
Cobalt	2/2	0.04	0.06	NC	0.06	0.04
Copper	2/2	1.1	1.3	NC	1.3	1.1
Iron	2/2	22.8	24.6	NC	24.6	22.8
Lead	1 / 2	0.008	0.01	NC	0.01	0.01
Manganese	2/2	2.6	3.11	NC	3.1	2.6
Mercury	2/2	0.01	0.01	NC	0.01	0.01
Molybdenum	0/2	0.15	0.15	NC	0.15	0.15
Nickel	1 / 2	0.08	0.10	NC	0.10	0.08
Selenium	2/2	0.30	0.30	NC	0.30	0.30
Thallium	0/2	0.02	0.02	NC	0.02	0.02
Vanadium	0 / 2	0.10	0.10	NC	0.10	0.10
Zinc	2/2	17.4	18.2	NC	18.2	17.4

mg/kg, wwt - milligram per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

NC = Not calculated because of small sample size.

Created: RAR 2/7/2008 QC'd: EK 2/19/2008

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Blacknose Dace Tissue Residues from EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point	Concentration
	Frequency of		Maximum Detect	95% UCL of	Reasonable Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	mean	Exposure	Exposure
Metals (mg/kg, wwt)						
Aluminum	6/6	8.7	16.8	NC	16.8	8.7
Barium	6 / 6	2.1	2.4	NC	2.4	2.1
Beryllium	0 / 6	0.01	0.01	NC	0.01	0.01
Cadmium	6 / 6	0.05	0.07	NC	0.07	0.05
Chromium	6 / 6	0.28	0.3	NC NC	0.30	0.28
Cobalt	6 / 6	0.08	0.09	NC	0.09	0.08
Copper	6 / 6	2.4	3.5	NC	3.5	2.4
Iron	6 / 6	35.5	50.8	NC	50.8	35.5
Lead	6/6	0.03	0.04	NC	0.04	0.03
Manganese ·	6/6	5.3	6.4	NC	6.4	_. 5.3
Mercury	6 / 6	0.02	0.02	NC	0.02	0.02
Molybdenum	0/6.	0.15	0.15	NC	0.15	0.15
Nickel	6 / 6	0.17	0.2	NC	0.20	0.17
Selenium	6 / 6	0.38	0.5	NC	0.50	0.38
Thallium	0 / 6	0.02	0.02	NC	0.02	0.02
Vanadium	0 / 6	0.10	0.10	NC	0.10	0.10
Zinc	6/6	39.0	41.6	NC	41.6	39.0

mg/kg, wwt = milligrams per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Blacknose Dace Tissue Residues from the Upstream Reference Section of the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point	Concentration
	Frequency of		Maximum Detect	95% UCL of	Reasonable Maximum	Central Tendency
COPECs	Detection	Arithmetic Mean	(qualifier)*	mean	Exposure	Exposure
Metals (mg/kg, wwt)						
Aluminium	3 / 3	6.4	8.9	NC	8.9	6.4
Barium	3 / 3	2.2	2.3	NC	2.3	2.2
Beryllium	0 / 3	0.01	0.01	NC	0.01	0.01
Cadmium	3 / 3	0.03	0.04	NC	0.04	0.03
Chromium	3 / 3	0.33	0.40	NC	0.40	0.33
Cobalt	3 / 3	0.02	0.02	NC	0.02	0.02
Copper	3 / 3	1.2	2.1	NC	2.1	1.2
Iron	3 / 3	30.9	33.5	NC	33.5	30.9
Lead	3 / 3	0.03	0.03	NC	0.03	0.03
Manganese	3 / 3	5.3	5.5	NC NC	5.5	5.3
Mercury	3 / 3	0.02	0.03	NC NC	0.03	0.02
Molybdenum	0/3	0.15	0.15	NC	0.15	0.15
Nickel	3 / 3	0.20	0.20	NC	0.20	0.20
Selenium	3 / 3	0.40	0.40	NC	0.40	0.40
Thallium	0/3	0.02	0.02	NC	0.02	0.02
Vanadium	0/3	0.10	0.10	NC	0.10	0.10
Zinc	3/3	39.0	42.5	NC	42.5	39.0

Note: The metals shown in this Attachment are those identified as tissue COPECs for blacknose dace in the impacted section of the EBOR.

mg/kg, wwt = milligrams per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Exposure Point Concentrations for Surface Water COPECs in School House Brook (Wildlife Receptors)

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				95% UCL of the Mean ¹			Exposure Poir	nt Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)	Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure
Metals, total (ug/L)								
Aluminum	37 / 37	395	2000	494	G	95% Approx Gamma	494	395
Antimony	5 / 38	13.6	0.67	NC		Apriliativa in tratificacio e e proprio programmento de mentre de mante de mante de mande e de mande de mentre	0.67	13.6
Arsenic	7 / 38	32.5	0.19 J	NC		The state of the contract of t	0.19	32.5
Barium	37 / 37	17.4	30.0	18.8	N	95% Student's-t	18.8	17.4
Cadmium	26 / 46	0.41	1.2 B	0.23	LN	95% KM (% Bootstrap)	0.23	0.41
Chromium	21 / 46	3.0	4.5	2.0	G	95% KM (t)	2.0	3.0
Cobalt	41 / 45	4.6	25.0	6.8	NP	95% KM (Chebyshev)	6.8	4.6
Copper	45 / 45	117	1100	222	NP	95% Chebyshev	222	117
Iron	45 / 45	414	2200	569	LN	95% H-UCL	569	414
Lead	25 / 44	3.8	16.0	2.4	NP	95% KM (Chebyshev)	2.4	3.8
Manganese	45 / 45	41.5	260 J	67	NP '	95% Chebyshev	67.0	41.5
Mercury	3 / 18	0.09	0.17 J	NC			0.17	0.09
Molybdenum	15 / 37	1.6	0.40	0.18	NP	95% KM (t)	0.18	1.6
Nickel	41 / 46	3.1	12.0	3.3	NP	95% KM (Chebyshev)	3.3	3.1
Selenium	3 / 46	1.8	8.5	NC		## ### ### ###########################	8.5	1.8
Silver	4 / 46	0.97	0.67	NC			0.67	0.97
Strontium	29 / 29	142	274	160	N	95% Student's-t	160	142
Vanadium	24 / 46	2.2	2.7	0.53	NP	95% KM (% Bootstrap)	0.53	2.2
Zinc	45 / 45	23.5	150	37.6	NP	95% Chebyshev	37.6	23.5

COPECs - Chemicals of Potential Ecological Concern

Note: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

ug/L = micrograms per liter

1 - Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

J - estimated value

B - analyte is associated with blank contamination

Distribution

NP - non parametric

G - gamma

LN - lognormal

Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Section of School House Brook (Wildlife Receptors) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

-						95% UCL	of the Mean ¹	Exposure Poi	nt Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Deto		Value	Distribution	Method	Reasonable Maximum Exposure	Central Tendency Exposure
Metals, total (ug/L)									
Aluminum	15 / 16	183	840		599	NP	97.5% KM (chebyshev)	599	183
Antimony	2 / 16	11.3	0.10		NC	· •••		0.10	11.3
Arsenic	2 / 16	31.7	0.18	J	NC			0.18	31.7
Barium	16 / 16	16.6	28.0		19.5	N	95% Student's-t	19.5	16.6
Cadmium	3 / 18	1.1	0.02		NC			0.02	1.1
Chromium	6 / 18	2.7	3.0	В	NC			3.0	2.7
Cobalt	8 / 18	1.3	0.50		NC	, 		0.50	1.3
Copper	14 / 18	1.6	2.0		1.3	N	95% KM (t)	1.3	1.6
Iron	18 / 18	163	780		726	NP	99% Chebyshev	726	163
Lead	5 / 18	6.0	0.82		NC			0.82	6.0
Manganese	18 / 18	16.3	80.0		28.1	LN	95% H-UCL	28.1	16.3
Mercury	0 / 7	0.07	0.10		NC			0.10	0.07
Molybdenum	8 / 14	1.2	0.34		NC	,		0.34	1.2
Nickel	11 / 18	1.3	1.4		0.76	N .	95% KM (t)	0.76	1.3
Selenium	0 / 18	0.51	1.7		NC	**		1.7	0.51
Silver	0 / 18	0.44	2.5		NC		The state of the s	2.5	0.44
Strontium	12 / 12	139	240	ľ	169	N	95% Student's-t	169	139
Vanadium	10 / 18	0.92	1.6		0.57	LN	95% KM (% Bootstrap)	0.57	0.92
Zinc	16 / 18	7.3	49.4		24.3	LN	97.5% KM (Chebyshev)	24.3	7.3

Note 1: the metals shown in this Attachment are those identified as surface water COPECS in the impacted section of School House Brook.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

COPECs - Chemicals of Potential Ecological Concern

ug/L = micrograms per liter

* - Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

1 - Statistics were performed using Pro UCL Software version 4.0.02

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of the small number of detects.

Distribution

B - analyte is associated with blank contamination

NP - non parametric

J - estimated value

LN - lognormal

Exposure Point Concentrations for Surface Water COPECs in the EBOR (Wildlife Receptors)

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

·	<u> </u>	······································					Exposure Po	int Concentration
					95% UCL (of mean ¹	Reasonable	
	Frequency of	Arithmetic	Maximum Detect				Maximum	Central Tendency
COPECs	Detection	Mean	(qualifier)	Value	Distribution	Method	Exposure	Exposure
Metals, Total (ug/L)			**					
Aluminum	32 / 35	172	820	380	LN	97.5% KM (Chebyshev)	380	172
Antimony	7 / 35	10.4	0.76	NC			0.76	10.4
Arsenic	3 / 35	25.5	0.20	NC		•	0:20	25.5
Barium	33 / 35	19.9	. 30.0	19.4	G	95% KM (BCA)	19.4	19.9
Cadmium	9 / 35	0.96	0.09	NC			0.09	0.96
Chromium	4 / 35	3.0	1.2	NC			1.2	3.0
Cobalt	18 / 35	3.5	1.8	0.67	G	95% KM (BCA)	0.67	3.5
Copper	33 / 35	13.3	67	23.9	G	95% KM (Chebyshev)	23.9	13.3
Iron	34 / 35	196	880	332	LN	95% KM (Chebyshev)	332	196
Lead	14 / 35	4.5	0.56	0.43	NP	95% KM (BCA)	0.43	4.5
Manganese	35 / 35	28.8	171	34.3	LN	95% H-UCL	34.3	28.8
Mercury	3 / 18	0.10	0.20	NC			0.20	0.10
Molybdenum	15 / 19	1.2	0.40	0.17	G	95% KM (BCA)	0.17	1.2
Nickel	18 / 35	3.6	10	1.5	LN	95% KM (% Bootstrap)	1.5	3.6
Selenium	2 / 35	1.9	5.8 J	NC			5.8	1.9
Strontium	19 / 19	129	194	149	NP	95% Student's-t	149	129
Vanadium	14 / 35	3.9	0.91	NC	***		0.91	3.9
Zinc	31 / 35	93.7	3100	629	NP	97.5% KM (Chebyshev)	629	93.7

ug/L = micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

Note: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

1 - Statistics were performed using Pro UCL Software version 4.0.02

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

NC - Not Calculated because of small sample size.

Qualifier Definitions:

J - estimated value

Distributions

NP - Non parametric

G - Gamma

LN - Lognormal

Exposure Point Concentrations for Surface Water COPECs in the Upstream Reference Section of the EBOR (Wildlife Receptors) Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

							Exposure Po	int Concentration
		A!41	B4 D-44		95% UCL 6	of mean ¹	Reasonable	Control Tourismos
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)*	Value	Distribution	Method	Maximum Exposure	Central Tendency Exposure
Metals, Total (ug/L)			<u> </u>	·	<u> </u>	***************************************		
Aluminum	11 / 11	178	710	357	G	95% Approx Gamma	357	178
Antimony	5 / 11	9.4	0.07	NC	**************************************		0.07	9.4
Arsenic	0 / 11	45.8	100	NC			100	45.8
Barium	11 / 11	21.3	31.0	26	G	95% Approx Gamma	26.0	21.3
Cadmium	0 / 11	2.1	2.5	NC	· · · · · · · · · · · · · · · · · · ·		2.5	2.1
Chromium	1 / 11	3.8	1.3	NC			1.3	3.8
Cobalt	5 / 11	2.0	0.24	NC			0.24	2.0
Copper	6 / 11	2.7	1.1 J	NC	The same is a second of the se		1.1	2.7
Iron	11 / 11	166	650	318	G	95% Approx Gamma	318	166
Lead ·	6 / 11	7.2	0.50	NC	HA 144		0.50	7.2
Manganese	11 / 11	24.1	52.0	32.2	·N -	95% Student's-t	32.2	24.1
Mercury	0/2	0.05	0.05	NC			0.05	0.05
Molybdenum	8/9	1.2	0.20	NC			0.20	1.2
Nickel	6 / 11	1.7	0.65	NC			0.65	1.7
Selenium	0 / 11	0.37	1.7	NC			1.7	0.37
Strontium	9/9	133	197	NC			197	133
Vanadium	8 / 11	0.86	0.91	NC	Note the		0.91	0.86
Zinc	10 / 11	4.4	16.3	10.7	G	95% KM (Chebyshev)	10.7	4.4

Note 1: the metals shown in this Attachment are those identified as surface water COPECS in impacted reach of the EBOR.

Note 2: High analytical detection limits (which were divided in half for use in the EPC calculations) caused some of the CTEs to exceed their associated RMEs.

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

ug/L = micrograms per liter

- 1 Statistics were performed using Pro UCL Software version 4.0.02
- * Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

95% UCL - Upper Confidence Limit of mean concentration

NC - Not calculated because of small sample size

Qualifier Definitions:

J - estimated value

Distributions

Exposure Point Concentrations for Combined Fish Tissue Residues from School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure P	oint Concentration
COPECs	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)	95% UCL of mean	Reasonable Maximum Exposure	Central Tendency Exposure
Metals (mg/kg, wwt)			<u> </u>	.1		<u></u>
Aluminium	9/9	5.66	12.4	NC NC	12.4	5.7
Antimony	4/9	0.12	0.40	NC	0.40	0.12
Barium	9 / 9	1.8	2.3	NC	2.3	1.8
Cadmium	9/9	0.04	0.07	NC	0.07	0.04
Chromium	9 / 9	0.38	0.50	NC	0.50	0.38
Cobalt	9/9	0.06	0.11	NC	0.11	0.06
Copper	9 / 9	4.6	7.9	NC I	7.9	4.6
Iron	9/9	34.7	46.9	NC	46.9	34.7
Lead	9 / 9	0.15	1.17	NC	1.2	0.15
Manganese	9/9	3.6	4.2	NC	4.2	3.6
Mercury	9 / 9	0.01	0.02	NC	0.02	0.01
Nickel	8 / 9	0.17	0.20	NC	0.20	0.17
Selenium	9 / 9	0.41	0.50	NC	0.50	0.41
Vanadium	2/9	0.10	0.10	NC	0.10	0.10
Zinc	9 / 9	34.1	40.9	NC	40.9	34.1

mg/kg, wwt = milligram per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

Exposure Point Concentrations for Combined Fish Tissue Residues from the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Po	int Concentration
00000			Maximum Detect	95% UCL	Reasonable Maximum	Central Tendency
COPECs	Frequency of Detection	Arithmetic Mean	(qualifier)*	of mean	Exposure	Exposure
Metals (mg/kg, wwt)	•					
Aluminium	7 / 7	9.3	26.5	NC	26.5	9.3
Antimony	0 / 7	0.05	0.05	NC	0.05	0.05
Barium	7 / 7	0.58	1.1	NC	1.1	0.58
Cadmium	7 / 7	0.05	0.08	NC	0.08	0.05
Chromium	7 / 7	0.46	0.60	NC	0.60	0.46
Cobalt	7 / 7	0.04	0.06	NC	0.06	0.04
Copper	7 / 7	1.4	1.9	NC	1.9	1.4
Iron	7/7	0.01	0.02	NC	0.02	0.01
Lead	7/7	38.6	60.5	NC	60.5	38.6
Manganese	7/7:	3.8	6.1	NC	6.1	3.8
Mercury	7	0.04	0.06	NC	0.06	0.04
Nickel	7 / 7	0.14	0.20	NC	0.20	0.14
Selenium	7/7	0.56	0.70	NC	0.70	0.56
Vanadium	4 / 7	0.14	0.20	NC	0.20	0.14
Zinc	7 / 7	24.4	33.9	NC	33.9	24.4

Note: the metals shown in this Attachment are those identified as fish COPECS in the impacted section of School House Brook. Blacknose dace and brook trout were the only fish species collected for fissue residue analysis.

mg/kg, wwt - milligram per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

95% UCL - Upper Confidence Limit of mean concentration

^{* -} Value represents one half of the maximum non-detect reporting limit (RL), if chemical was not detected.

Exposure Point Concentrations for Combined Fish Tissue Residues for the EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

					Exposure Point	Concentration
	Frequency of	Arithmetic	Maximum Detect	95% UCL of	Reasonable Maximum	Central Tendency
COPECs	Detection	Mean	(qualifier)	mean	Exposure	Exposure
Metals (mg/kg, wwt)						
Aluminium	8 / 8	7.1	16.8	NC NC	16.8	7.1
Barium	8 / 8	1.7	2.4	NC	2.4	1.7
Cadmium	8 / 8	0.04	0.07	NC	0.07	0.04
Chromium	7/8	0.27	0.30	NC NC	0.30	0.27
Cobalt	8 / 8	0.07	0.09	NC	0.09	0.07
Copper	8 / 8	2.1	3.5	NC	3.5	2.1
Iron	8 / 8	32.4	50.8	NC	50.8	32.4
Lead	7/8	0.02	0.04	NC NC	0.04	0.02
Manganese	8 / 8	4.6	6.4	NC	6.4	4.6
Mercury	8/8	0.01	0.02	NC	0.02	0.01
Nickel	7/8	0.14	0.20	NC	0.20	0.14
Selenium	8 / 8	0.36	0.50	NC	0.50	0.36
Zinc	8 / 8	33.6	41.6	NC	41.6	33.6

mg/kg, wwt = milligram per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

95% UCL - 95% Upper Confidence Limit of mean concentration

Exposure Point Concentrations for Combined Fish Tissue Residues from the Upstream Reference Section of the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			,		Exposure Point	Concentration
			Maximum Detect	95% UCL of	Reasonable Maximum	Central Tendency
COPECs	Frequency of Detection	Arithmetic Mean	(qualifier)*	mean	Exposure	Exposure
Metals (mg/kg, wwt)						. ,
Aluminium	3 / 3	6.4	8.9	NC	8.9	6.4
Barium	3 / 3	2.2	2.3	NC	2.3	2.2
Cadmium	3 / 3	0.03	0.04	NC NC	0.04	0.03
Chromium	3 / 3	0.33	0.40	NC	0.40	0.33
Cobalt	3 / .3	0.02	0.02	NC	0.02	0.02
Copper	3 / 3	1.2	2.1	NC	2.1	1.2
Iron	3 / 3	0.02	33.5	NC	33.5	30.9
Lead	3 / 3	30.9	0.03	NC	0.03	0.03
Manganese	3 / 3	0.03	5.5	NC	5.5	5.28
Nickel	3 / 3	0.20	0.20	NC	0.20	0.20
Selenium	3 / 3	0.40	0.40	NC	0.40	0.40
Zinc	3 / 3	39.0	42.5	NC	42.5	39.0

Note: The metals shown in this Attachment are those identified fish COPECs in the impacted reach of the EBOR. Blacknose dace was the only fish species collected for tissue residue analyses. mg/kg, wwt = milligrams per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

95% UCL - 95% Upper Confidence Limit of mean concentration

^{* -} If sample was not detected, value represents one half of the maximum non-detect reporting limit (RL).

Attachment 5.44: Aquatic and emergent invertebrate BSAFs for use in food chain modeling								
COPEC	BSAFs for the aquatic life stages of benthic invertebrates	BSAFs for the emergent life stages of aquatic insects						
Aluminum	0.098	0.098						
Antimony	0.2	0.2						
Arsenic	0.127	0.127						
Barium	0.951	0.951						
Beryllium	0.13	0.13						
Cadmium	3.07	Regression ^a						
Chromium	0.588	0.588						
Cobalt	Regression ^a	Regression ^a						
Copper	95%UPL ^{b,c}	Regression						
Iron	0.072	0.072						
Lead	0.066	0.066						
Manganese	0.505	0.505						
Mercury	1.74	1.08						
Molybdenum	1.15	1.15						
Nickel .	95%UPL°	95%UPL						
Selenium	Regression ^a	Regression ^a * 0.4 ^d						
Silver	0.18	0.18						
Strontium	1.0 ^e	1.0 ^e						
Thallium	0.71	0.71						
Tin	1.0 ^e	1.0 ^e						
Vanadium	Regression ^a	Regression ^a						
Zinc	95%UPL ^c	0.84						
Cyanide	1.0 ^e	1.0 ^e						

Source: Section 3.3 and Table R-3 in Appendix R of the Elizabeth Copper Mine BERA (URS, 2006).

Note: The calculated concentrations of metals in invertebrates is provided in mg/kg dry weight because the sediment concentrations are reported as mg/kg dry weight and the BSAFs are unitless.

^a the BSAF is calculated based on the following regression models:

Metal	Model
Cadmium	y = 0.191 + 0.668 * (log[sediment])
Cobalt	y = 0.395 + 0.121 * [sediment]
Copper	y = 1.230 + 0.079 * (log[sediment])
Selenium	y = 1.422 * [sediment]
Vanadium	y = -1.531 + 0.722 * ln([sediment)]

^b 95%UPL = the 95% Upper Prediction Limit of the regression model developed for this metal

Bechtel Jacobs Company LLC. 1998. Biota-sediment bioaccumulation factors for invertebrates: review and recommendations for the Oak Ridge Reservation. BJC/OR-112. Oak Ridge National Laboratory. Oak Ridge, TN.

^c See Appendix A in Bechtel Jacobs Company LLC (1998) for the procedure to calculate a 95%UPL

^d 0.4 is a correction factor to account for the fact that around 60% of the Se is estimated to be contained in the exoskeleton which is removed in the final molt before aquatic insects emerge from the water.

⁶ This BAV was not provided in Appendix R of the Elizabeth Copper Mine BERA (URS, 2006). A conservative value of 1.00 was assumed for use in the dose calculations.

	A	ttachment 5.4	5: Summa	ary of exposure	paramete	rs for wildl	ife rece	ptors of	concern	evaluated in th	e aquatic	portion of	the BERA		
Rep	presentative spe	ecies						Dietar	y Compo	osition			Ingestion R	ates	
											F	ood	Water	S	ubstrate
Common name	Scientific name	Food web status	Home Range (km)	Home Range Reference	Area Use Factor (AUF)	Body Weight (kg ww)	Plants	Invertebrates	fish	reference	kg ww/d	reference	liters/d	kg ww/d	reference
						AVIA	N RECE	PTORS							
Tree swallow	Tachycineta bicolor	Aerial insectivore	60	Robertson et al. (1992)	0.75	0.02		100%		Sibley (2000)	0.048	Nagy (2001)	0.004	0	assumption ¹
Belted kingfisher	Ceryle alcyon	Aquatic piscivore	2.25	Sample & Suter (1994)	1.0	0.148		10%	90%	Sample & Suter (1994)	0.115	Nagy (2001) ²	0.016	0	Sample & Suter (1994)
						MAMMAL	IAN RE	CEPTO	RS						
Small- footed bat	Myotis leibii	Aerial insectivore	not avail.	-	1.0	0.005		100%		DeGraaf et al. (1986)	0.0044	Nagy (2001) ³	0.001	0	assumption
Mink	Mustela vison	Semi- aquatic piscivore	2.63	Sample & Suter (1994)	1.0	1.0			100%	USEPA (1993); Sample & Suter, 1994	0.1995	Nagy (2001) ⁴	0.099	0	Sample & Suter (1994)

Source: Table R-1 in Appendix R of URS (2006). The food ingestion rates in Table R-1 were originally presented in dry weight. These values were converted to wet weight by assuming that fish and emergent insects have a water content equal to 80% and 75%, respectively. The original food ingestion rates in Table R-1 were modified as follows: tree swallow = 0.012 kg dw/day x 4 = 0.048 kg ww/day; kingfisher = 0.023 kg dw/day X 5 = 0.115 kg ww/day; small-footed bat = 0.0011 kg dw/day X 4 = 0.0044 kg ww/day; mink = 0.0399 $kq \frac{dw}{dav} X 5 = 0.1995 kq \frac{ww}{dav}$

Notes:

- assumption based on the assumption from Sample and Suter (1994) that substrate ingestion is negligible for aerial insectivores
- ² estimated food ingestion rate (kg/day dry weight) for carnivorous birds = (0.849[body weight in grams]^{0.663})/1000 (Nagy, 2001)
- ³ estimated food ingestion rate (kg/day dry weight) for Chiroptera = (0.365[body weight in grams]^{0.671})/1000 (Nagy, 2001) ⁴ estimated food ingestion rate (kg/day dry weight) for Carnivora = (0.102[body weight in grams]^{0.664})/1000 (Nagy, 2001)

references:

De Graaf, R.M. and D.D. Rudis. 1986. New England wildlife: habitat, natural history, and distribution. General Technical Report NE-108. Broomall, PA: USDA, Forest Service, Northeatern Forest Experiment Station. 491 p.

Nagy, K.A. 2001. Food requirements for wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutrition Abstracts and Reviews, Series B: Lifestock Feeds and Feeding, Volume 71, No. 10.

Robertson, R.J., B.J. Stutchbury, and R.R. Cohen. 1992. Tree swallow (Tachycineta bicolor). The Birds of North America, No. 11 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, and the American Ornithologists' Union, Washington, DC.

Sample, B.E. and G.W. Suter. 1994. Estimating exposure of terrestrial wildlife to contaminants. ES/ER/TN-125. Oak Ridge National Laboratory, Oak Ridge, TN.

Sibley, D.A. 2000. The Sibley guide to birds. New York: Alfred A. Knopf. 544 p.

U.S. EPA. 1993. Wildlife Exposure Factors Handbook. EPA/600/R-93/187.

	I	T	in aquatic and terrestr	T T	· · · · · · · · · · · · · · · · · · ·
Common Name	Scientific name	Life stage	Water Content (range)	Comment	Reference
		FRESWATER AQU	JATIC INVERTEBRATE	ES	
caddis fly	Limnephilus affinis	larvae	82.5% (80%-85%)	whole organism	Sutcliffe, 1961
crayfish	Austropotamobius pallipes	adult	76%	whole organism	Taylor et al., 1987
freshwater crab	Potamon niloticus	adult(?)	79% (75%-83%)	muscle	Shaw, 1958
aquatic insect	Corixa dentipes	adult(?)	74.3%	whole organism	Staddon, 1964
amphipod	Gammarus pulex	adult male	79.8%	whole organism	Sutcliffe, 1971
average wat	er content in freshwater aqu	uatic invertebrates	78.3%		
		TERRESTRIA	L INVERTEBRATES		<u> </u>
cockroach	Periplaneta americana	adult; both sexes	69.5%	whole organism	Machin et al., 1991
aphid insect	Aphis fabae	adult	68.1% (64%-72.5%)	whole organism	Cockbain, 1961
flesh fly	Sarcophaga crassipalpis	adult female	67.5%	whole organism	Yoder and Delinger, 1991
tobacco hornworm	Manduca sexta	caterpillar	84.5%	carcass	Reynolds and Bellward, 1989
fruit fly	Drosophila (many species)	adult	65%	whole organism	Gibbs and Matzkin, 2001
spider beetle	Mezium affine	adult female	64%	whole organism	Benoit et al., 2005
scorpion	four species	adult	64.8% (63%-66.5%)	whole organism	Gefen and Ar, 2005
golden rod gall fly	Eurosta Solidaginis	larvae	60% (58%-62%)	whole organism	Williams and Lee, 2005
apterygote insect	Thermobia domestica	adult	75.6%	whole organism	Okasha, 1972

Attachment 5.47: Bioa	availability adjustment factors	(BAVs) for carnivores
	D	iet
COPEC	Birds	Mammals
Aluminum	1.00°	1.00°
Antimony	1.00	· 1.00
Arsenic	1.00	1.00
Barium	1.00	1.00 ^c
Beryllium	1.00	1.00
Cadmium	1.00	0.54
Chromium	1.00	0.09
Cobalt	1.00	1.00
Copper	0.53	1.00
Lead	0.43	1.00
Manganese	1.00 ^c	1.00 ^c
Mercury (inorganic)	1.00	0.25
Mercury (organic)	1.00	1.00
Molybdenum	1.00 ^c	1.00
Nickel ·	1.00	1.00
Selenium	0.44 ^a /.40 ^b	0.57 ^a /0.40 ^b
Silver	1.00	1.00
Thallium	1.00°	1.00
Vanadium	1.00°	1.00
Zinc	1.00	1.00
Cyanide	1.00°	1.00°

Source: Section 1.0 (Mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006).

Note 1: The BAVs for sediment were omitted from this attachment because wildlife receptors feeding on aquatic prey are assumed not to be exposed to COPECs in sediment via incidental ingestion.

^a This BAV applies to piscivores only
^b This BAV applies to insectivores only
^c This BAV was not provided in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). A conservative value of 1.00 was assumed for use in the dose calculations.

Attachment 5.48 Estimated Daily Doses for Tree Swallows at School House Brook Ely Copper Mine Superfund Site, Vershire, VT

	RME				(n	EDD ng/kg bw-d	ay)		CTE					EDD (mg/kg bw-	·day)	
	Exposure Point Cor	ncentration		D	iet		Water		Exposure Point Co	ncentration			iet		Water	
COPECs	Sediment (mg/kg, wet weight)**	Surface Water (ug/L)~	BSAF	BAV*	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD ³	Sediment (mg/kg, wet weight)**	Surface Water (ug/L)~	BSAF	(BAV)*	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD ³
Metals				<u> </u>			1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				·			diet	Water	£ 17 17
Aluminum	12000	494	0.098	1.0	1.0	2.12E+03	7.41E-02	2.12E+03	7007	395	0.098	1.0	1.0	1.24E+03	5.92E-02	1.24E+03
Antimony	2.4	0.67	0.2	1.0	1.0	8.60E-01	1.01E-04	8.61E-01	3.5	13.6	0.2	1.0	1.0	1.27E+00		1.27E+00
Arsenic	2.8	0.19	0.127	1.0	1.0	6.41E-01	2.85E-05	6.41E-01	2.0	32.5	0.127	1.0	1.0	4.62E-01	4.87E-03	4.67E-01
Barium	106	18.8	0.951	1.0	1.0	1.82E+02	2.82E-03	1.82E+02	62.1	17.4	0.951	1.0	1.0	1.06E+02	2.61E-03	1.06E+02
Beryllium	1.6	0.08	0.13	1.0	1.0	3.77E-01	1.20E-05	3.77E-01	0.56	2.6	0.13	1.0	1.0	1.31E-01	3.84E-04	1.32E-01
Cadmium [^]	0.49	0.23	-0.02	1.0	1.0	-1.41E-02	3.41E-05	-1.40E-02	0.58	0.41	0.03	1.0	1.0	3.64E-02	6.12E-05	3.65E-02
Chromium	23.3	2.0	0.588	1.0	1.0	2.46E+01	2.98E-04	2.46E+01	19.8	3.0	0.588	1.0	1.0	2.10E+01	4.52E-04	2.10E+01
Cobalt	24.7	6.8	3.39	1.0	1.0	1.51E+02	1.01E-03	1.51E+02	13.5	4.6	2.03	1.0	1.0	4.94E+01	6.85E-04	4.94E+01
Copper	489 ·	222	1.44	0.53	1.0	6.73E+02	3.33E-02	6.74E+02	300	117	1.43	0.53	1.0	4.08E+02	1.76E-02	4.08E+02
Iron	58800	569	0.072	1.0	1.0	7.62E+03	8.54E-02	7.62E+03	14267	414	0.072	1.0	1.0	1.85E+03	6.21E-02	1.85E+03
Lead	31.4	2.4	0.066	0.43	1.0	1.60E+00	3.60E-04	1.60E+00	7.9	3.8	0.066	0.43	1.0	4.04E-01	5.70E-04	4.05E-01
Manganese	655	67.0	0.505	1.0	1.0	5.95E+02	1.01E-02	5.95E+02	442	41.5	0.505	1.0	1.0	4.02E+02	6.22E-03	4.02E+02
Mercury	0.02	0.17	1.08	1.0	1.0	4.67E-02	2.55E-05	4.67E-02	0.03	0.09	1.08	1.0	1.0	5.57E-02	1.39E-05	5.57E-02
Molybdenum	2.3	0.18	1.15	1.0	1.0	4.70E+00	2.67E-05	4.70E+00	1.2	1.6	1.15	1.0	1.0	2.52E+00	2.43E-04	2.52E+00
Nickel	22.0	3.3	1.32	1.0	1.0	5.24E+01	5.02E-04	5.24E+01	12.9	3.1	1.42	1.0	1.0	3.30E+01	4.64E-04	3.30E+01
Selenium	2.8	8.5	1.57	0.40	1.0	3.13E+00	1.28E-03	3.13E+00	2.3	1.8	1.33	0.40	1.0	2.23E+00	2.64E-04	2.23E+00
Silver	0.49	0.67	0.18	1.0	1.0	1.59E-01	1.01E-04	1.59E-01	0.67	0.97	0.18	1.0	1.0	2.17E-01	1.46E-04	2.17E-01
Strontium	212	160	1.0	1.0	1.0	3.81E+02	2.40E-02	3.81E+02	194	142	1.0	1.0	1.0	3.50E+02	2.13E-02	3.50E+02
Vanadium	34.3	0.53	1.02	1.0	1.0	6.29E+01	8.01E-05	6.29E+01	23.5	2.2	0.75	1.0	1.0	3.16E+01	3.31E-04	3.16E+01
Zinc	64.3	37.6	0.84	1.0	1.0	9.73E+01	5.64E-03	9.73E+01	57.4	23.5	0.84	1.0	1.0	8.67E+01	3.52E-03	8.67E+01

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

EDD - Estimated Daily Dose

DF - Dose Fraction for invertebrates

BAV - Bioavailability Adjustment Factor

BSAF - Biota-Sediment Accumulation Factor (for emergent aquatic insects)

** - Aluminum, antimony, cadmium, iron, lead, mercury, nickel, and silver were not selected as COPECs in fish. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

~ -Beryllium was not selected as COPECs in surface water. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE value represents the mean concentration.

* - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed.

1 EDD_{diet} = IR_{diet} X BSAF X C_{sed} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 0.75 Body Weight (BW) 0.02

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

IR_{diet} 0.048

3 Total EDD = EDD_{diet} + EDD_{water} IR_{water} 0.004

BSAF Calculations

Cadmium

0.191+ (0.668*LOG[sediment])

Cobalt 0.395+0.121*[sediment]

Copper 1.23+ (0.079*LOG[sediment])

Selenium 1,422*[sediment]*0.4

Vanadium -1.531+ (0.722*LN[sediment])

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value.

Attachment 5.49 Estimated Daily Doses for Tree Swallows in the Upstream Reference Section of School House Brook Ely Copper Mine Superfund Site, Vershire, VT

,	RME					EDD mg/kg bw-			СТЕ	***************************************				EDD ng/kg bw-c		
	Exposure Point Co	ncentration]	Diet		Water		Exposure Point Cor	centration	<u> </u>		Diet		Water	i i
COPECs	Sediment (mg/kg, wet weight)**	Surface Water (ug/L)~	BSAF	BAV*	DF	EDD _{diet}	EDD _{water} ²	Total EDD	Sediment (mg/kg, wet weight)**	Surface Water (ug/L)~	BSAF	BAV*	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD
Metals																
Aluminum	12000	599	0.098	1.0	1.0	2.12E+03	8.98E-02	2.12E+03	7308	183	0.098	1.0	1.0	1.29E+03	2.74E-02	1.29E+03
Antimony	0.15	0.10	0.2	1.0	1.0	5.40E-02	1.50E-05	5.40E-02	3.2	11.3	0.2	1.0	1.0	1.15E+00	1.70E-03	1.16E+00
Arsenic	3.0	0.18	0.127	1.0	1.0	6.86E-01	2.70E-05	6.86E-01	2.2	31.7	0.127	1.0	1.0	4.92E-01	4.76E-03	4.97E-01
Barium	148	19.5	0.951	1.0	1.0	2.54E+02	2.92E-03	2.54E+02	64.7	16.6	0.951	1.0	1.0	1.11E+02	2.48E-03	1.11E+02
Beryllium	2.0	5.0	0.13	1.0	1.0	4.68E-01	7.50E-04	4.69E-01	0.60	2.8	0.13	1.0	1.0	1.41E-01	4.13E-04	1.41E-01
Cadmium	1.5	0.02	0.31	1.0	1.0	8.33E-01	3.00E-06	8.33E-01	0.57	1.1	0.03	1.0	1.0	2.89E-02	1.63E-04	2.91E-02
Chromium	52.0	3.0	0.588	1.0	1.0	5.50E+01	4.50E-04	5.50E+01	23.1	2.7	0.588	1.0	1.0	2.45E+01	4.04E-04	2.45E+01
Cobalt	6.0	0.50	1.12	1.0	1.0	1.20E+01	7.50E-05	1.20E+01	5.0	1.3	1.00	1.0	1.0	9.11E+00	1.96E-04	9.11E+00
Copper	14.6	1.3	1.32	0.53	1.0	1.84E+01	1.92E-04	1.84E+01	10.5	1.6	1.31	0.53	1.0		2.34E-04	
Iron	25800	726	0.072	1.0	1.0	3.34E+03	1.09E-01	3.34E+03	9928	163	0.072	1.0	1.0	1.29E+03	2.44E-02	1.29E+03
Lead	11.2	0.82	0.066	0.43	1.0	5.72E-01	1.23E-04	5.72E-01	5.4	6.0	0.066	0.43	1.0	2.74E-01	8.98E-04	2.75E-01
Manganese	599	28.1	0.505	1.0	1.0	5.45E+02	4.21E-03	5.45E+02	442	16.3	0.505	1.0	1.0	4.02E+02	2.45E-03	4.02E+02
Mercury	0.01	0.10	1.08	1.0	1.0	2.72E-02	1.50E-05	2.72E-02	0.03	0.07	1.08	1.0	1.0	5.97E-02	1.07E-05	5.97E-02
Molybdenum	0.28	0.34	1.15	1.0	1.0	5.80E-01	5.10E-05	5.80E-01	0.55	1.2	1.15	1.0	1.0	1.14E+00	1.74E-04	1.14E+00
Nickel	21.0	0.76	1.33	1.0	1.0	5.04E+01	1.14E-04	5.04E+01	13.3	1.3	1.42	1.0	1.0	3.40E+01	2.02E-04	3.40E+01
Selenium	0.30	1.7	0.17	0.40	1.0	3.69E-02	2.55E-04	3.71E-02	0.70	0.51	0.40	0.40	1.0		7.71E-05	2.01E-01
Silver	0.36	2.5	0.18	1.0	1.0	1.17E-01	3.75E-04	1.17E-01	0.97	0.44	0.18	1.0	1.0	3.14E-01	6.54E-05	3.14E-01
Strontium	257	169	1.0	1.0	1.0	4.63E+02	2.53E-02	4.63E+02	230	139	1.0	1.0	1.0	4.13E+02	2.08E-02	4.13E+02
Thallium	20.0	2.6	0.71	1.0	1.0	2.56E+01	3.83E-04	2.56E+01	2.8	0.58	0.71	1.0	1.0	3.54E+00	8.75E-05	3.54E+00
Vanadium	29.7	0.57	0.92	1.0	1.0	4.91E+01	8.61E-05	4.91E+01	21.5	0.92	0.68	1.0	1.0	2.64E+01	1.38E-04	2.64E+01
Zinc	40.1 Attachment are those identified	24.3	0.84	1.0	1.0		3.64E-03	6.07E+01	28.8	7.3	0.84	1.0	1.0	4.36E+01	1.10E-03	4.36E+01

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction for invertebrates

BAV - Bioavailability Adjustment Factor

BSAF - Biota-Sediment Accumulation Factor (for emergent aquatic insects)

** - Aluminum, antimony, arsenic, cobalt, copper, iron, lead, nickel, and zinc were not selected as COPECs in fish. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

~ Beryllium, selenium, and thallium were not selected as COPECs in surface water. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE value represents the mean concentration.

* - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for strontium was listed, 100% bioavailability was assumed. Equations

1 EDD_{diet} = IR_{diet} X BSAF X C_{sed} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 0.75

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

Body Weight (BW) 0.02

3 Total EDD = EDDdiet + EDDweler

IR_{diet} 0.048

IR_{water} 0.004

BSAF Calculations

Vanadium

Cadmium 0.191+ (0.668*LOG[sediment]) 0.395+ (0.121*[sediment]) Cobalt Copper 1,23+ (0.079*LOG[sediment]) Selenium 1.422*[sediment]*0.4 -1.531+ (0.722*LN[sediment])

Attachment 5.50 Estimated Daily Doses for Tree Swallows at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

	RME				•	EDD			CTE				lm	EDD g/kg bw-c	day)	
į	Exposure Point Co	ncontration			Diet	(mg/kg bw	Water	r	Exposure Point Co	ncontration	 	D		g/kg bw-	Water	T
	Exposure Form Co	nicentiation			DIGE		vvalei		Exposure Point Co		 	<u></u>			Water	
	`															
	Sediment	Surface Water						T-4-1	Sediment	Surface Water						T-4-1
			BSAF	DAV*	DF	con 1	EDD 2	Total	(mg/kg, wet weight)**	(ug/L)~	BSAF	(BAV)*	DE	EDD 1	EDD 2	Total
COPECs	(mg/kg, wet weight)**	(ug/L)~	DOAF	DAV	DF	EDD _{diet} 1	EDD _{water} ²	EDD ³	(mg/kg, wet weight)	(ug/L)~	DOAL	(BAV)	DF	EDD _{diet} 1	EDD _{water} ²	EDD ³
Metals				,						·	T	·	· · ·			T
Aluminum	14000	380	0.098	1.0	1.0	2.47E+03	5.70E-02	2.47E+03	7847	172	0.098	1.0		1.38E+03	2.58E-02	1.38E+03
Antimony	1.8	0.76	0.2	1.0	1.0	6.48E-01	1.14E-04	6.48E-01	3.7	10.4	0.2	1.0		1.33E+00	PARTY CONTROL CONTROL AND CONTROL CONT	1.33E+00
Arsenic	5.0	0.20	0.127	1.0	1.0	1.14E+00	3.00E-05	1.14E+00	2.6	25.5	0.127	1.0	A CONTRACTOR OF STREET	5.97E-01	3.83E-03	6.01E-01
Barium	90.0	19.4	0.951	1.0	1.0	1.54E+02	2.91E-03	1.54E+02	46.3	19.9	0.951	1.0		7.93E+01	2.98E-03	7.93E+01
Beryllium	1.8	5.0	0.13	1.0	1.0	4.21E-01	7.50E-04	4.22E-01	0.40	2.8	0.13	1.0		9.24E-02		9.28E-02
Cadmium^	0.18	0.09	-0.31	1.0	1.0	-9.93E-02	1.34E-05	-9.93E-02	0.62	0.96	0.05	1.0		5.55E-02	1.44E-04	5.56E-02
Chromium	31.5	1.2	0.588	1.0	1.0	3.33E+01	1.80E-04	3.33E+01	18.9	3.0	0.588	1.0	1.0	2.00E+01.	4.53E-04	2.00E+01
Cobalt	28.5	0.67	3.84	1.0	1.0	1.97E+02	1.01E-04	1.97E+02	9.3	3.5	1.52	1.0	1.0	2.56E+01	5.25E-04	2.56E+01
Copper	127	23.9	1.40	0.53	1.0	1.69E+02	3.58E-03	1.69E+02	76.3	13.3	1.38	0.53	1.0	1.00E+02	2.00E-03	1.00E+02
Iron	22800	332	0.072	1.0	1.0	2.95E+03	4.98E-02	2.95E+03	10694	196	0.072	1.0	1.0	1.39E+03	2.94E-02	1.39E+03
Lead	11.0	0.43	0.066	0.43	1.0	5.62E-01	6.44E-05	5.62E-01	6.0	4.5	0.066	0.43	1.0	3.07E-01	6.70E-04	3.07E-01
Manganese	475	34.3	0.505	1.0	1.0	4.32E+02	5.15E-03	4.32E+02	355	28.8	0.505	1.0	1.0	3.22E+02	4.31E-03	3.22E+02
Mercury	0.024	0.20	1.08	1.0	1.0	4.67E-02	3.00E-05	4.67E-02	0.03	0.10	1.08	1.0	1.0	6.78E-02	1.46E-05	6.78E-02
Molybdenum	1.1	0.17	1.15	1.0	1.0	2.28E+00	2.60E-05	2.28E+00	0.92	1.2	1.15	1.0	1.0	1.91E+00	1.75E-04	1.91E+00
Nickel	21,0	1.49	1.33	1.0	1.0	5.04E+01	2.24E-04	5.04E+01	12.6	3.6	1.43	1.0	1.0	3.23E+01	5.34E-04	3.23E+01
Selenium	0.81	5.8	0.46	0.40	1.0	2,69E-01	8.70E-04	2.70E-01	1.6	1.9	0.93	0.40	1.0	1.09E+00	2.90E-04	1.09E+00
Silver	0.57	0.03	0.18	1.0	1.0	1,85E-01	4.80E-06	1.85E-01	0.72	1.0	0.18	1.0	1.0	2.35E-01	1.52E-04	2.35E-01
Strontium	193	149	1.0	1.0	1.0	3.47E+02	2,24E-02	3.47E+02	193	129	1.0	1.0	1.0	3.47E+02	1.93E-02	3.47E+02
Thallium	13.8	12.5	0.71	1.0	1.0	1.76E+01	1.88E-03	1.76E+01	4.5	2.1	0.71	1.0	1.0	5.80E+00	3.08E-04	5.80E+00
Vanadium	49.0	0.91	1.28	1.0	1.0	1.13E+02	1.37E-04	1.13E+02	19.8	3.9	0.62	1.0		2.22E+01	5.87E-04	2.22E+01
Zinc	58.7	629	0.84	1.0	1.0	8.88E+01	9.44E-02	8.89E+01	43.6	93.7	0.84	1.0		6.59E+01	1.41E-02	6.60E+01

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

EDD - Estimated Daily Dose

DF - Dose Fraction for invertebrates

BAV - Bioavailability Adjustment Factor

BSAF - Biota-Sediment Accumulation Factor (for emergent aquatic insects)

- ** Aluminum, antimony, cadmium, iron, lead, mercury, nickel, and silver were not selected as COPECs in fish. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- ~ -Beryllium was not selected as COPECs in surface water. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- * Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed.
- 1 EDD first = IR for X BSAF X Csarl X DF; X AUF X BAV / BW

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW 3 Total EDD = EDD_{diet} + EDD_{water}

Area Use Factor (AUF) 0.75

Body Weight (BW) 0.02

IR_{det} 0.048

IR_{water} 0.004

BSAF Calculations

0.191+ (0.668*LOG[sediment]) Cadmium

Cobalt 0.395+0.121*[sediment]

1.23+ (0.079*LOG[sediment]) Copper

1.422*[sediment]*0.4 Selenium

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value.

Attachment 5.51

Estimated Daily Doses for Tree Swallows at the Upstream Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

	RME					EDD (mg/kg bw	/-day)		CTE					EDD (mg/kg bw-c	lay)	
	Exposure Point Con				Diet		Water		Exposure Point Co			•	Diet		Water	
	Sediment	Surface Water				_	_	Total	Sediment	Surface Water						Total
COPECs	(mg/kg, wet weight)**	(ug/L)~	BSAF	BAV*	DF	EDD _{diet} 1	EDD _{water} ²	EDD	(mg/kg, wet weight)**	(ug/L)~	BSAF	BAV*	DF	EDD _{d[et} 1	EDD _{water} ²	EDD
Metals																
Aluminum	6600	357	0.098	1.0	1.0	1.16E+03	5.36E-02	1.16E+03	5600	178	0.098	1.0	1.0	9.88E+02	2.67E-02	9.88E+02
Antimony	0.19	0.07	0.2	1.0	1.0	6.84E-02	9.75E-06	6.84E-02	3.5	9.4	0.2	1.0	1.0	1.27E+00	1.40E-03	1.27E+00
Arsenic	3.0	100	0.127	1.0	1.0	6.86E-01	1.50E-02	7.01E-01	4.9	45.8	0.127	0.1	1.0	1.41E-01	6.87E-03	1.48E-01
Barium	187	26.0	0.951	1.0	1.0	3.20E+02	3.90E-03	3.20E+02	79.4	21.3	0.951	1.0	1.0	1.36E+02	3.20E-03	1.36E+02
Beryllium	1.6	5.0	0.13	1.0	1.0	3.74E-01	7.50E-04	3.75E-01	0.75	4.1	0.13	1.0	1.0	1.76E-01	6.16E-04	1.76E-01
Cadmium	1.5	2.5	0.31	1.0	1.0	8.33E-01	3.75E-04	8.34E-01	0.53	2,1	0.00	1.0	1.0	3.84E-03	3.12E-04	4.16E-03
Chromium	37.0	1.3	0.588	1.0	1.0	3.92E+01	1.95E-04	3.92E+01	20.9	3.8	0.588	1.0	1.0	2.21E+01	5.70E-04	2.21E+01
Cobalt	4.5	0.24	0.94	1.0	1.0	7.61E+00	3.60E-05	7.61E+00	2.8	2.0	0.73	1.0	1.0	3.63E+00	2.96E-04	3.63E+00
Copper	4.5	1.1	1.28	0.53	1.0	5.50E+00	1.65E-04	5.50E+00	3.2	2.7	1.27	0.53	1.0	3.88E+00	4.05E-04	3.88E+00
Iron	6420	318	0.072	1.0	1.0	8.32E+02	4.77E-02	8.32E+02	4383	166	0.072	1.0	1.0	5.68E+02	2.49E-02	5.68E+02
Lead	9.6	0.50	0.066	0.43	1.0	4.90E-01	7.50E-05	4.90E-01	7.5	7.2	0.066	0.43	1.0	3.83E-01	1.07E-03	3.84E-01
Manganese	475	32.2	0.505	1.0	1.0	4.32E+02	4.83E-03	4.32E+02	278	24.1	0.505	1.0	1.0	2.53E+02	3.62E-03	2.53E+02
Mercury	0.03	0.1	1.08	1.0	1.0	5.83E-02	7.50E-06	5.83E-02	0.02	0.05	1.08	1.1	1.0	4.20E-02	7.50E-06	4.20E-02
Molybdenum	0.16	0.20	1.15	1.0	1.0	3.31E-01	3.00E-05	3.31E-01	0.16	1.2	1.15	1.0	1.0	3.31E-01	1.80E-04	3.31E-01
Nickel	11.7	0.65	1.44	1.0	1.0	3.03E+01	9.75E-05	3.03E+01	7.8	1.7	1.51	1.0	1.0	2.11E+01	2.58E-04	2.12E+01
Selenium	5.0	1.7	2.84	0.40	1.0	1.02E+01	2.55E-04	1.02E+01	1.8	0.37	1.03	0.40	1.0	1.34E+00	5.52E-05	1.34E+00
Silver	0.28	0.02	0.18	1.0	1.0	9.07E-02	2.25E-06	9.07E-02	0.76	0.58	0.18	1.0	1.0	2.46E-01	8.75E-05	2.46E-01
Strontium	198	197	1.0	1.0	1.0	3.56E+02	2.96E-02	3.56E+02	198	133	1.0	1.0	1.0	3.56E+02	2.00E-02	3.56E+02
Thallium	17.5	2.6	0.7	1.0	1.0	2.24E+01	3.83E-04	2.24E+01	9,1	0.41	0.71	1.0	1.0	1.16E+01	6.14E-05	1.16E+01
Vanadium	38.0	0.91	1.10	1.0	1.0	7.49E+01	1.37E-04	7.49E+01	20.3	0.86	1.10	1.0	1.0	4.01E+01	1.29E-04	4.01E+01
Zinc	33.0	10.7	0.84	1.0	1.0	4.99E+01	1.61E-03	4.99E+01	22.2	4.4	0.84	1.0	1.0	3.36E+01	6.59E-04	3.36E+01

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the east branch of the Ompompanoosuc River.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction for invertebrates

BAV - Bioavailability Adjustment Factor

BSAF - Biota-Sediment Accumulation Factor (for emergent aquatic insects)

- **- Aluminum, antimony, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, vanadium, and zinc were not selected as COPECs in sediment. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- ~-Beryllium, cadmium, selenium, and thallium were not selected as COPECs in surface water. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration. Equations

1 EDD_{dist} = IR_{dist} X BSAF X C_{sed} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 0.75

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

Body Weight (BW) 0.02

3 Total EDD = EDD_{diet} + EDD_{water}

IR_{diet} 0.048 IR_{water} 0.004

BSAF Calculations

 Cadmium
 0.191+0.668*LOG[sediment]

 Cobalt
 0.395+0.121*[sediment]

 Copper
 1.23+0.079*LOG[sediment]

 Selenium
 1.422*[sediment]*0.4

 Vanadium
 -1.531+0.722*LN(sediment)

Attachment 5.52 Estimated Daily Doses for the Eastern Small-footed Bats at School House Brook Ely Copper Mine Superfund Site. Vershire. VT

	RME				(mg	EDD /kg bw-da	y) '		СТЕ				(m	EDD g/kg bw-da	y)	
	Exposure Point C	oncentration		I	Diet		Water		Exposure Point C	oncentration		. [Diet		Water	
COPECs	Sediment (mg/kg, wet weight)*	Surface Water (ug/L)**	BSAF	BAV~	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD	Sediment (mg/kg, wet weight)*	Surface Water (ug/L)**	BSAF	BAV~	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD
Metals	<u> </u>		L,,	!			l				<u> </u>	<u></u>	<u> </u>		1 14107	
Aluminum	12000	494	0.098	1.0	1.0	1.03E+03	9.88E-02	1.03E+03	7007	395	0.098	1.0	1.0	6.04E+02	7.89E-02	6.04E+02
Antimony	2.4	0.67	0.2	1.0	1.0	4.21E-01	1.34E-04	4.21E-01	3.5	13.6	0.2	1.0	1.0	6.19E-01	2.73E-03	6.22E-01
Arsenic	2.8	0.19	0.127	1.0	1.0	3.13E-01	3.80E-05	3.13E-01	2.0	32.5	0.127	1.0	1.0	2.26E-01	6.49E-03	2.32E-01
Barium	106	18.8	0.951	1.0	1.0	8.89E+01	3.76E-03	8.89E+01	62,1	17.4	0.951	1.0	1.0	5.19E+01	3.48E-03	5.19E+01
Beryllium	1.6	0.08	0.13	1.0	1.0	1.84E-01	1.60E-05	1.84E-01	0.56	2.6	0.13	1.0	1.0	6.42E-02	5.12E-04	6.48E-02
Cadmium^	0.49	0.23	-0.02	0.54	1.0	-3.71E-03	4.54E-05	-3.67E-03	0.58	0.41	0.03	0.54	1.0	9.61E-03	8.16E-05	9.69E-03
Chromium	23.3	2.0	0.588	0.09	1.0	1.08E+00	3.97E-04	1.08E+00	19.8	3.0	0.588	0.09	1.0	9.24E-01	6.03E-04	9.25E-01
Cobalt	24.7	6.8	3.39	1.0	1.0	7.37E+01	1.35E-03	7.37E+01	13.5	4.6	2.03	1.0	1.0	2.42E+01	9.14E-04	2.42E+01
Copper	489	222	1.44	1.0	1.0	6.21E+02	4.43E-02	6.21E+02	300	117	1.43	1.0	1.0	3.76E+02	2.34E-02	3.77E+02
Iron ·	58800	569	0.072	1.0	1.0	3.73E+03	1.14E-01	3.73E+03	14267	414	0.072	1.0	1.0	9.04E+02	8.27E-02	9.04E+02
Lead	31.4	2.4	0.066	1.0	1.0	1.82E+00	4.80E-04	1.82E+00	7.9	3.8	0.066	1.0	1.0	4.60E-01	7.60E-04	4.61E-01
Manganese	655	67.0	0.505	1.0	1.0	2.91E+02	1.34E-02	2.91E+02	442	41.5	0.505	1.0	1.0	1.96E+02	8.30E-03	1.96E+02
Mercury	0.02	0.17	1.08	0.25	1.0	5.70E-03	3.40E-05	5.74E-03	0.03	0.09	1.08	0.25	1.0	6.81E-03	1.85E-05	6.82E-03
Molybdenum	2.3	0.18	1.15	1.0	1.0	2.30E+00	3.56E-05	2.30E+00	1.2	1.6	1.15	1.0	1.0	1.23E+00	3.25E-04	1.23E+00
Nickel	22.0	3.3	1.32	1.0	1.0	2.56E+01	6.69E-04	2.56E+01	12.9	3.1	1.42	1.0	1.0	1.61E+01	6.19E-04	1.61E+01
Selenium	2.8	8.5	1.57	0.40	1.0	1.53E+00	1.70E-03	1.53E+00	2.3	1.8	1.33	0.40	1.0	1.09E+00	3.52E-04	1.09E+00
Silver	0.49	0.67	0.18	1.0	1.0	7.76E-02	1.34E-04	7.78E-02	0.67	0.97	0.18	1.0	1.0	1.06E-01	1.94E-04	1.06E-01
Strontium	212	160	1.0	1.0	1.0	1.86E+02	3.20E-02	1.87E+02	194	142	1.0	1.0	1.0	1.71E+02	2.85E-02	1.71E+02
Vanadium	34.3	0.53	1.02	1.0	1.0	3.08E+01	1.07E-04	3.08E+01	23.5	2.2	0.75	1.0	1.0	1.54E+01	4.41E-04	1.54E+01
Zinc	64.3	37.6	0.84	1.0	1.0	4.75E+01	7.52E-03	4.76E+01	57.4	23.5	0.84	1.0	1.0	4.24E+01	4.69E-03	4.24E+01

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction of Invertebrates

BSAFs - Biota-Sediment Accumulation Factors for emergent aquatic invertebrates

BAV - Bioavailability Adjustment Factor

- *- Aluminum, antimony, cadmium, iron, lead, mercury, nickel, and silver were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- ** Beryllium was not selected as a surface water COPEC. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- ~ Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed. Equations

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 1.0

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

Body Weight (BW) 0.005

3 Total EDD = EDD_{diet} + EDD_{water} IR_{diet} 0.044 IR_{water} 0.001

BSAF Calculations

Cadmium 0.191+ (0.668*LOG[sediment])

Cobalt 0.395+0.121*[sediment]

Copper 1.23+ (0.079*LOG[sediment])

Selenium 1.422*[sediment]*0.4

Vanadium -1.531 + 0.722*LN[sediment]

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value.

Attachment 5.53

Estimated Daily Doses for the Eastern Small-footed Bats at the Reference Section of School House Brook Ely Copper Mine Superfund Site, Vershire, VT

					-	EDD				· · · · · · · · · · · · · · · · · · ·	l			Dose		
	RME				(ı	ng/kg bw-da	ıy)		CTE					(mg/kg bw-c	day)	
	Exposure Point Cor	ncentration		. Di	et		Water	,	Exposure Point C	oncentration			iet		Water	
	,						-		•							
	Sediment	Surface Water				·		Total	Sediment	Surface Water						Total
COPECs	(mg/kg, wet weight)*	(ug/L)**	BSAF	BAV~	DF	EDD _{diet} 1	EDD _{water} ²	EDD	(mg/kg, wet weight)*	(ug/L)**	BSAF	BAV	DF	EDD _{diet} 1	EDD _{water} ²	EDD
Metals				***************************************		·					<u> </u>	L	·			
Aluminum	12000	599	0.098	1.0	1.0	1.03E+03	1.20E-01	1.03E+03	7308	183	0.098	1.0	1.0	6.30E+02	3.65E-02	6.30E+02
Antimony	0.15	0.10	0.2	1.0	1.0	2.64E-02	2.00E-05	2.64E-02	3.2	11.3	0.2	1.0	1.0	5.64E-01	2.27E-03	5.66E-01
Arsenic	3.0	0.18	0.127	1.0	1.0	3.35E-01	3.60E-05	3.35E-01	2.2	31.7	0.127	1.0	1.0	2.40E-01	6.35E-03	2.47E-01
Barium	148	19.5	0.951	1.0	1.0	1.24E+02	3.89E-03	1.24E+02	64.7	16.6	0.951	1.0	1.0	5.42E+01	3.31E-03	5.42E+01
Beryllium	2.0	5.0	0.13	1.0	1.0	2.29E-01	1.00E-03	2.30E-01	0.60	2.8	0.13	1.0	1.0	6.89E-02	5.50E-04	6.95E-02
Cadmium	1.5	0.02	0.31	0.54	1.0	2.20E-01	4.00E-06	2.20E-01	0.57	1.1	0.03	0.54	1.0	7.63E-03	2.17E-04	7.85E-03
Chromium	52.0	.3.0	0.588	0.09	1.0	2.42E+00	6.00E-04	2.42E+00	23.1	2.7	0.588	0.09	1.0	1.08E+00	5.38E-04	1.08E+00
Cobalt	6.0	0.50	1.12	1.0	1.0	5.88E+00	1.00E-04	5.88E+00	5.0	1.3	1.0044	1.0	1.0	4.45E+00	2.61E-04	4.45E+00
Copper	14.6	1.3	1.32	1.0	1.0	1.70E+01	2.55E-04	1.70E+01	10.5	1.6	1.31	1.0	1.0	1.21E+01	3.12E-04	1.21E+01
Iron	25800	726	0.072	1.0	1.0	1.63E+03	1.45E-01	1.63E+03	9928	163	0.072	1.0	1.0	6.29E+02	3.25E-02	6.29E+02
Lead	11.2	0.82	0.066	1.0	1.0	6.50E-01	1.64E-04	6.51E-01	5.4	6.0	0.066	1.0	1.0	3.12E-01	1.20E-03	3.13E-01
Manganese	.599	28.1	0.505	1.0	1.0	2.66E+02	5.62E-03	2.66E+02	442	16.3	0.505	1.0	1.0	1.96E+02	3.26E-03	1.96E+02
Mercury	0.01	0.10	1.08	0.25	1.0	3.33E-03	2.00E-05	3.35E-03	0.03	0.07	1.08	0.25	1.0	7.29E-03	1.43E-05	7.31E-03
Molybdenum	0.28	0.34	1.15	1.0	1.0	2.83E-01	6.80E-05	2.83E-01	0.55	1.2	1.15	1.0	1.0	5.55E-01	2.32E-04	5.56E-01
Nickel	21.0	0.76	1.33	1.0	1.0	2.46E+01	1.52E-04	2.46E+01	13.3	1.3	1.42	1.0	1.0	1.66E+01	2.70E-04	1.66E+01
Selenium	0.30	1.7	0.17	0.40	1.0	1.80E-02	3.40E-04	1.84E-02	0.70	0.51	0.40	0.40	1.0	9.82E-02	1.03E-04	9.83E-02
Silver	0.36	2.5	0.18	1.0	1.0	5.70E-02	5.00E-04	5.75E-02	0.97	0.44	0.18	1.0	1.0	1.54E-01	8.72E-05	1.54E-01
Strontium	257	169	• 1.0	1.0	1.0	2.26E+02	3.37E-02	2.26E+02	230	139	1.0	1.0	1.0	2.02E+02	2.78E-02	2.02E+02
Thallium	20.0	2.6	0.71	1.0	1.0	1.25E+01	5.10E-04	1.25E+01	2.8	0.58	0.71	1.0	1.0	1.73E+00	1.17E-04	1.73E+00
Vanadium	29.7	0.57	0.92	1.0	1.0	2.40E+01	1.15E-04	2.40E+01	21.5	0.92	0.68	1.0	1.0	1.29E+01	1.84E-04	1.29E+01
Zinc	40.1	24.3	0.84	1.0	1.0	2.97E+01	4.85E-03	2.97E+01	28.8	7.3	0.84	1.0	1.0	2.13E+01	1.46E-03	2.13E+01

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction of invertebrates

BSAFs - Biota-Sediment Accumulation Factors for emergent aquatic invertebrates

BAV - Bioavailability Adjustment Factor

*-Aluminum, antimony, arsenic, cobalt, copper, iron, lead, nickel, and zinc were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

**- Beryllium, selenium, and thallium were not selected as surface water COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

~ - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed.

Equations

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 1.0 Body Weight (BW) 0.005

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

IR_{diel} 0.0044

3 Total EDD = EDD_{diet} + EDD_{water}

IR_{water} 0.001

BSAF Calculations

 Cadmium
 0.191+ (0.668*LOG[sediment])

 Cobalt
 0.395+0.121*[sediment]

 Copper
 1.23+ (0.079*LOG[sediment])

 Selenium
 1.422*[sediment]*0.4

 Vanadium
 -1.531 + 0.722*LN[sediment]

Attachment 5.54 Estimated Daily Doses for the Eastern Small-footed Bats at the EBOR Ely Mine Copper Superfund Site, Vershire, VT

	RME Exposure Point C	oncentration		D	(r iet	EDD ng/kg bw-d	ay) Water		CTE Exposure Point Co	oncentration		D	(iet	EDD mg/kg bw-	day) Water	
COPECs	Sediment (mg/kg, wet weight)*	Surface Water (ug/L)**	BSAF	BAV~		EDD _{diet} 1	EDD _{water} ²	Total EDD	Sediment (mg/kg, wet weight)*	Surface Water	BSAF			EDD _{diet} 1	EDD _{water} ²	Total EDD
Metals																
Aluminum	14000	380	0.098	1.0	1.0	1.21E+03	7.60E-02	1.21E+03	7847	172	0.098	1.0	1.0	6.77E+02	3.44E-02	6.77E+02
Antimony	1.8	0.76	0.2	1.0	1.0	3.17E-01	1.52E-04	3.17E-01	3.7	10.4	0.2	1.0	1.0	6.49E-01	2.08E-03	6.51E-01
Arsenic	5.0	0.20	0.127	1.0	1.0	5.59E-01	4.00E-05	5.59E-01	2.6	25.5	0.127	1.0	1.0	2.92E-01	5.10E-03	2.97E-01
Barium	90.0	19.4	0.951	1.0	1.0	7.54E+01	3.88E-03	7.54E+01	46.3	19.9	0.951	1.0	1.0	3.88E+01	3.97E-03	3.88E+01
Beryllium	1.8	5.0	0.13	1.0	1.0	2.06E-01	1.00E-03	2.07E-01	0.40	2.8	0.13	1.0	1.0	4.52E-02	5.55E-04	4.57E-02
Cadmium [^]	0.18	0.09	-0.31	0.54	1.0	-2.62E-02	1.78E-05	-2.62E-02	0.62	0.96	0.05	0.54	1.0	1.47E-02	1.92E-04	1.48E-02
Chromium	31.5	1.2	0.588	0.09	1.0	1.47E+00	2.40E-04	1.47E+00	18.9	3.0	0.588	0.09	1.0	8.78E-01	6.04E-04	8.79E-01
Cobalt	28.5	0.67	3.84	1.0	1.0	9.64E+01	1.35E-04	9.64E+01	9.3	3.5	1.52	1.0	1.0	1.25E+01	7.00E-04	1.25E+01
Copper	127	23.9	1.40	1.0	1.0	1.56E+02	4.78E-03	1.56E+02	76.3	13.3	1.38	1.0	1.0	9.26E+01	2.66E-03	9.26E+01
Iron	22800	332	0.072	1.0	1.0	1.44E+03	6.63E-02	1.44E+03	10694	196	0.072	1.0	1.0	6.78E+02	3.92E-02	6.78E+02
Lead	11.0	0.43	0.066	1.0	1.0	6.39E-01	8.58E-05	6.39E-01	6.0	4.5	0.066	1.0	1.0	3.49E-01	8.93E-04	3.49E-01
Manganese	475	34.3	0.505	1.0	1.0	2.11E+02	6.86E-03	2.11E+02	355	28.8	0.505	1.0	1.0	1.58E+02	5.75E-03	1.58E+02
Mercury	0.02	0.20	1.08	0.25	1.0	5.70E-03	4.00E-05	5.74E-03	0.03	0.10	1.08	0.25	1.0	8.28E-03	1.94E-05	8.30E-03
Molybdenum	1.1	0.17	1.15	1.0	1.0	1.11E+00	3.46E-05	1.11E+00	0.92	1.2	1.15	1.0	1.0	9.35E-01	2.33E-04	9.35E-01
Nickel	21.0	1.5	1.33	1.0	1.0	2.46E+01	2.98E-04	2.46E+01	12.6	3.6	1.43	1.0	1.0	1.58E+01	7.12E-04	1.58E+01
Selenium	0.81	5.8	0.46	0.40	1.0	1.31E-01	1.16E-03	1.33E-01	1.6	1.9	0.93	0.40	1.0	5.31E-01	3.86E-04	5.32E-01
Silver	0.57	0.03	0.18	1.0	1.0	9.03E-02	6.40E-06	9.03E-02	0.72	1.0	0.18	1.0	1.0	1.15E-01	2.03E-04	1.15E-01
Strontium	193	149	1.0	1.0	1.0	1.70E+02	2.98E-02	1.70E+02	193	129	1.0	1.0	1.0	1.70E+02	2.58E-02	1.70E+02
Thallium	13.8	12.5	0.71	1.0	1.0	8.59E+00	2.50E-03	8.59E+00	4.5	2.1	0.71	1.0	1.0	2.84E+00	4.11E-04	2.84E+00
Vanadium	49.0	0.91	1.28	1.0	1.0	5.51E+01	1.82E-04	5.51E+01	19.8	3.9	0.62	1.0	1.0	1.09E+01	7.82E-04	1.09E+01
Zinc	58.7	629	0.84	1.0	1.0	4.34E+01	1.26E-01	4.35E+01	43.6	93.7	0.84	1.0	1.0	3.22E+01	1.87E-02	3.23E+01

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the east branch of the Ompompanoosuc River.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

DF - Dose Fraction of Invertebrates

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

BSAFs - Biota-Sediment Accumulation Factors for emergent aquatic invertebrates

BAV - Bioavailability Adjustment Factor

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 1.0

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

Body Weight (BW) 0.00

3 Total EDD = EDD_{det} + EDD_{water}

IR_{det} 0.0044 IR_{water} 0.001

BSAF Calculations

Cadmium

0.191+ (0.668*LOG[sediment])

Cobalt

0.395+0.121*[sediment]

Copper

1.23+ (0.079*LOG[sediment])

Selenium

1.422*[sediment]*0.4

Vanadium -1.531 + 0.722*LN[sediment]

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value.

^{*-} Aluminum, antimony, arsenic, cadmium, chromium, cobalt, iron, lead, mercury, nickel, and vanadium were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

^{**-} Beryllium, silver, and thallium were not selected as surface water COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

^{~ -} Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed. Equations

Attachment 5.55

Estimated Daily Doses for the Eastern Small-footed Bats at Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

	RN	ME			(EDD mg/kg bw-	dav)		CTE					Dose (mg/kg bw		
		t Concentration		D	iet		Water		Exposure Point Co	oncentration	<u> </u>		Diet	(33	Water	T
·					<u> </u>											1
COPECs	Sediment (mg/kg, wet weight)*	Surface Water (ug/L)**	BSAF	BAV~	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD	Sediment (mg/kg, wet weight)	Surface Water (ug/L)	BSAF	BAV	DF	EDD _{diot} 1	EDD _{water} ²	Total EDD
Metals		<u> </u>	<u> </u>					l		· · · · · · · · · · · · · · · · · · ·	<u> </u>					-
Aluminum	6600	357	0.098	1.0	1.0	5.69E+02	7.15E-02	5.69E+02	5600	178	0.098	1.0	1.0	4.83E+02	3.56E-02	4.83E+02
Antimony	0.19	0.07	0.2	1.0	1.0	3.34E-02	1.30E-05	3.35E-02	3.5	9.4	0.2	1.0	1.0	6.19E-01	1.87E-03	6.21E-01
Arsenic	3.0	100	0.127	1.0	1.0	3.35E-01	2.00E-02	3.55E-01	4.9	45.8	0.127	1.0	1.0	5.44E-01	9.16E-03	5.53E-01
Barium	187	26.0	0.951	1.0	1.0	1.56E+02	5.20E-03	1.57E+02	79.4	21.3	0.951	1.0	1.0	6.64E+01	4.26E-03	6.64E+01
Beryllium	1.6	5.0	0.13	1.0	1.0	1.83E-01	1.00E-03	1.84E-01	0.75	4.1	0.13	1.0	1.0	8.58E-02	8.22E-04	8.66E-02
Cadmium	1.5	2.5	0.31	0.54	1.0	2.20E-01	5.00E-04	2.20E-01	0.53	2.1	0.004	0.54	1.0	1.01E-03	4.16E-04	1.43E-03
Chromium	37.0	1.3	0.588	0.09	1.0	1.72E+00	2.60E-04	1.72E+00	20.9	3.8	0.588	0.09	1.0	9.72E-01	7.60E-04	9.73E-01
Cobalt	4.5	0.24	0.94	1.0	1.0	3.72E+00	4.80E-05	3.72E+00	2.8	2.0	0.73	1.0	1.0	1.78E+00	3.94E-04	1.78E+00
Copper	4.5	1.1	1.28	1.0	1.0	5.08E+00	2.20E-04	5.08E+00	3.2	2.7	1.27	1.0	1.0	3.58E+00	5.40E-04	3.58E+00
Iron	6420	318	0.072	1.0	1.0	4.07E+02	6.37E-02	4.07E+02	4383	166	0.072	1.0	1.0	2.78E+02	3.33E-02	2.78E+02
Lead	9.6	0.50	0.066	1.0	1.0	5.58E-01	1.00E-04	5.58E-01	7.5	7.2	0.066	1.0	1.0	4.36E-01	1.43E-03	4.37E-01
Manganese	475	32.2	0.505	1.0	1.0	2.11E+02	6.43E-03	2.11E+02	278	24.1	0.505	1.0	1.0	1.24E+02	4.83E-03	1.24E+02
Mercury	0.03	0.05	1.08	0.25	1.0	7.13E-03	1.00E-05	7.14E-03	0.02	0.1	1.08	0.25	1.0	4.75E-03	1.00E-05	4.76E-03
Molybdenum	0.16	0.20	1.15	1.0	1.0	1.62E-01	4.00E-05	1.62E-01	0.16	1.2	1.15	1.0	1.0	1.62E-01	2.40E-04	1.62E-01
Nickel	11.7	0.65	1.44	1.0	1.0	1.48E+01	1.30E-04	1.48E+01	7.8	1.7	1.51	1.0	1.0	1.03E+01	3.44E-04	1.03E+01
Selenium	5.0	1.7	2.84	0.40	1.0	5.01E+00	3.40E-04	5.01E+00	1.8	0.37	1.03	0.40	1.0	6.55E-01	7.36E-05	6.55E-01
Silver	0.28	0.02	0.18	1.0	1.0	4.44E-02	3.00E-06	4.44E-02	0.76	0.58	0.18	1.0	1.0	1.20E-01	1.17E-04	1.21E-01
Strontium	198	197	1.0	1.0	1.0	1.74E+02	3.94E-02	1.74E+02	198	. 133	1.0	1.0	1.0	1.74E+02	2.66E-02	1.74E+02
Thallium	17.5	2.6	0.71	1.0	1.0	1.09E+01	5.10E-04	1.09E+01	9.1	0.41	0.71	1.0	1.0	5.65E+00	8.18E-05	5.65E+00
Vanadium	38.0	0.91	1.10	1.0	1.0	3.66E+01	1.82E-04	3.66E+01	20.3	0.86	0.64	1.0	1.0	1.15E+01	1.72E-04	1.15E+01
Zinc	33.0	10.7	0.84	1.0	1.0	2.44E+01	2.14E-03	2.44E+01	22.2	4.4	0.84	1.0	1.0	1.64E+01	8.79E-04	1.64E+01

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the east branch of the Ompompanoosuc River.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAFs - Biota-Sediment Accumulation Factors

BAV - Bioavailability Adjustment Factor

- *- Aluminum, antimony, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, vanadium, and zinc were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- **- Beryllium, cadmlum, selenium, and thallium were not selected as surface water COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.
- ~ Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed. Equations

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

Area Use Factor (AUF) 1.0 y Weight (BW) 0.005

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

IR_{diet} 0.0044

3 Total EDD = EDD_{dief} + EDD_{water}

IR_{water} 0.001

BSAF Calculations

Cadmium 0.191+ (0.668*LOG[sediment])

Cobalt 0.395+0.121*[sediment]

Copper 1.23+ (0.079*LOG[sediment])

Selenium 1.422*[sediment]*0.4

Vanadium -1.531 + 0.722*LN[sediment]

Attachment 5.56 Estimated Daily Dose for the Belted Kingfishers at School House Brook Ely Mine Superfund Site, Vershire, VT

		RME		1			ED (mg/kg l				·	CTE		Ι				DD bw-day)		i in the second
	Eynos	ure Point Concentration				Diet	unging	uw-uay)	Water	T	Fync	sure Point Concentration	n			Diet	mgrky	DW-uay)	Water	T
	<u> </u>	I COME CONCENTION	I	 				T	- 114401	1				†	T	I	Γ			1 1
COPECs	Sediment (mg/kg, wet weight)*	Fish (mg/kg, wet weight)**	Surface Water (ug/L)***	BSAFs	BAV~	DF _{invertebrates}	DF _{Fish}	Dose _{diet} 1	Dose _{water} .2	Total EDD	Sediment (mg/kg, wet weight)*	Fish (mg/kg, wet weight)**	Surface Water (ug/L)***	BSAFs	BAV~	DF _{Invertebrates}	DF _{Fish}	EDD _{dlet} 1	EDD _{water} 2	Total EDD ³
Metals	r		· · · · · · · · · · · · · · · · · · ·	,				,					,	·,		·				
Aluminum	12000	12.4	494	0.098	1,0	0.1	0.9	1.00E+02	5.34E-02	1.00E+02	7007	5.7	395	0.098	1.0	0.1	0.9	5.73E+01		5.74E+01
Antimony	2.4	0.40	0.7	0.2	1.0	0.1	0.9	3.17E-01	7.24E-05	3.17E-01	3.5	0.12	13.6	0.2	1.0	0.1	0.9	1.36E-01	1.47E-03	1.38E-01
Arsenic	2.8	0.15	0.2	0.127	1.0	0.1	0.9	1.33E-01	2.05E-05	1.33E-01	2.0	0.15	32.5	0.127	1.0	0.1	0.9	1.25E-01	3.51E-03	1.28E-01
Barium	106	2.3	18.8	0.951	1.0	0.1	0.9	9.46E+00	2.03E-03	9.47E+00	62.1	1.8	17.4	0.951	1.0	0.1	0.9	5.83E+00	1.88E-03	5.84E+00
Beryllium	1.6	0.01	0.08	0.13	1.0	0.1	0.9	1.98E-02	8.65E-06	1.98E-02	0.56	0.01	2.6	0.13	1.0	0.1	0.9	9.17E-03	2.77E-04	9.45E-03
Cadmium	0.49	0.07	0.23	3.07	1.0	0.1	0.9	1.66E-01	2.45E-05	1.66E-01	0.58	0.04	0.41	3.07	1.0	0.1	0.9	1.66E-01	4.41E-05	1.66E-01
Chromium	23.3	0.50	2.0	0.588	1.0	0.1	0.9	1.41E+00	2.14E-04	1.41E+00	19.8	0.38	3.0	0.588	1.0	0.1	0.9	1.17E+00	3.26E-04	1.17E+00
Cobalt	24.7	0.11	6.8	3.4	1.0	0.1	. 0.9	6.58E+00	7.30E-04	6.58E+00	13.5	0.06	4.6	2.03	1.0	0,1	0.9	2.17E+00	4.94E-04	2.17E+00
Соррег	489.	7.9	222	2.34	0.53	0.1	0.9	5.00E+01	2.40E-02	5.01E+01	300	4.6	117	2.28	0.53	0.1	0.9	2.98E+01	1.27E-02	2.99E+01
Iron	58800	46.9	569	0.072	1.00	0.1	0.9	3.62E+02	6.15E-02	3.62E+02	14267	34.7	414	0.072	1.00	0.1	0.9	1.04E+02	4.47E-02	1.04E+02
Lead	31,4	1.2	2.4	0.066	0.43	0.1	0.9	4.21E-01	2.60E-04	4.21E-01	7.9	0.15	3.8	0.066	0.43	0.1	0.9	6.19E-02	4.11E-04	6.23E-02
Manganese	655	4.2	67.0	0.505	1.0	0.1	-0.9	2.87E+01	7.24E-03	2.87E+01	442	3.6	41.5	0.505	1.0	0.1	0.9	1.99E+01	4.48E-03	1.99E+01
Mercury (inorganic)	0.02	0.02	0.17	1.74	1.0	0.1	0.9	1.79E-02	1.84E-05	1.79E-02	0.03	0.01	0.09	1.74	1.0	0.1	0.9	1.28E-02	1.00E-05	1.28E-02
Molybdenum	2.3	0.15	0.18	1.15	1.0	0.1	0.9	3.08E-01	1.92E-05	3.08E-01	1.2	0.15	1.6	1.15	1.0	0.1	0.9	2.13E-01	1.75E-04	2.14E-01
Nickel	22.0	0.20	3.3	1.3	1.0	0.1	0.9	2,40E+00	3.62E-04	2.40E+00	12.9	0.17	3.1	1,42	1.0	0.1	0.9	1.54E+00	3.35E-04	1.54E+00
Selenium	2.8	0.50	8.5	3.93	0.44	0.1	0.9	5.25E-01	9.19E-04	5.26E-01	2.3	0.41	1.8	3.32	0.44	0.1	0.9	3.92E-01	1,91E-04	3.92E-01
Silver	0.49	0	0.67	0.18	1.0	0.1	0.9	6.85E-03	7.24E-05	6.93E-03	0.67	0	.0.97	0.18	1.0	0.1	0.9	9.38E-03	1.05E-04	9.48E-03
Strontium	212	0	160	1.00	1.0	0.1	0.9	1.65E+01	1.73E-02	1.65E+01	194	0	142	1.0	1.0	0.1	0.9	1.51E+01	1.54E-02	1.51E+01
Vanadium	34.3	0.10	0.53	1.020	1.0	0.1	0.9	2.79E+00	5.77E-05	2.79E+00	23.5	0.10	2.2	0.75	1.0	0,1	0.9	1.43E+00	2.38E-04	1.43E+00
Zinc	64.3	40.9	37.6	2.6	1.0	0.1	0.9	4.16E+01	4.06E-03	4.16E+01	57.4	34.1	23.5	2.58	1.0	0.1	0.9	3.54E+01	2.54E-03	3.54E+01

Note: The metals shown in this Atlachment are those identified as surface water, fish, and sediment COPECs in the impacted reach of School House Brook.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction
BSAF - Biota-Sediment Accumulation Factor for benthic invertebrates

BAV - Bioavailability Adjustment Factor

- * Aluminum, antimony, cadmium, iron, feed, mercury, nickel, and silver were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.
- The CTE value represents the mean concentration. Silver and Thallium were not analyzed for in fish.

 ** Arsenic, beryllium, and molybdenum were not selected as fish COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE values represents the mean concentration. Silver and strontium were not analyzed for, value is zero.

*** - Beryllium was not selected as surface water COPECs. The RME Value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. THE CTE values represents the mean concentration.

~ - Source: Section 1.0 (mammats) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed; 100% bioavailability was assumed. Equations

1 EDD_{det} = IR_{det} X C_{flah} X DF, X AUF X BAV / BW

Area Use Factor (AUF) 1.0 Body Weight (BW) 0.148

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

IR_{det} 0.115

3 Total EDD = EDD out + EDD water

IR_{veter} 0.016

BSAF Calculations

0.395+(0.121*[sediment]) Cobalt

Selenium 1.422*[sediment]*.40

Vanadium -1.531+(0.722*LN[sediment])

Attachment 5.57 Estimated Daily Doses for Belted Kingfishers at the Reference Section of School House Brook Ely Copper Mine Superfund Site, Vershire, VT

******			···																	
	1			1				EDD						1			EDD			
		RME					(mg/kg	g bw-day)	·			CTE					g/kg by	v-day)		
	Expos	ure Point Concentration	<u> </u>	<u> </u>		Diet	,		Water		Expos	ure Point Concentration	r		·	Diet			Water	
COPECs	Sediment (mg/kg, wet weight)*	Fish (mg/kg, wet weight)**	Surface Water (ug/L)***	BSAFs	BAV~	DF _{invertebrates}	DF _{Fish}	EDD _{diet} 1	EDD _{water} ²	Total EDD	Sediment (mg/kg, wet weight)*	Fish (mg/kg, wet weight)**	Surface Water (ug/L)***		BAV~	DF _{Invertebrates}	DF _{Fish}	EDD _{diet} 1	EDD _{water} ²	Total EDD
Metals			d				**************************************						·		***************************************					
Aluminum ·	12000	26.5	599	0.098	1.0	. 0.1	0.9	1.10E+02	6.47E-02	1.10E+02	7308	9.3	183	0.098	1.0	0.1	0.9	6.22E+01	1.97E-02	6.22E+01
Antimony	0.15	0.05	0.10	0.2	1.0	0.1	0.9	3.73E-02	1.08E-05	3.73E-02	3.2	0.05	11.3	0.2	1.0	0.1	0.9	8.48E-02	1.23E-03	8.60E-02
Arsenic	3.0	0.15	0.18	0.127	1.0	0.1	0.9	1.35E-01	1.95E-05	1.35E-01	2.2	0.15	31.7	0.127	1.0	0.1	0.9	1.26E-01	3.43E-03	1.30E-01
Barium	148	1.13	19.5	0.951	1.0	0.1	0.9	1.17E+01	2.10E-03	1.17E+01	64.7	0.58	16.6	0.951	1.0	0.1	0.9	5.19E+00	1.79E-03	5.19E+00
Beryllium	2.0	0.01	5.0	0.13	1.0	0.1	0.9	2.37E-02	5.41E-04	2.42E-02	0.60	0.01	2.8	0.13	1.0	0.1	0.9	9.58E-03	2.97E-04	9.88E-03
Cadmium	1.5	0.08	0.02	3.07	1.0	0.1	0.9	4.14E-01	2.16E-06	4.14E-01	0.57	0.05	1.1	3.07	1.0	0.1	0.9	1.70E-01	1.17E-04	1.70E-01
Chromium	52.0	0.60	3.0	0.588	1.0	0.1	0.9	2.79E+00	3.24E-04	2.79E+00	23.1	0.46	2.7	0.588	1.0	0.1	0.9	1.38E+00	2.91E-04	1.38E+00
Cobalt	8.4	0.06	0.50	1.4	1.0	0.1	0.9	9.63E-01	5.41E-05	9.63E-01	5.0	0.04	1.3	1.00	1.0	0,1	0.9	4.23E-01	1.41E-04	4.23E-01
Copper	24.0	1.9	1.3	1.97	0.53	0.1	0.9	2.66E+00	1.38E-04	2.66E+00	10.5	1.4	1.6	1.87	0.53	0.1	0.9	1.34E+00	1.69E-04	1.34E+00
Iron	25800	0.02	726	0.072	1.00	0.1	0.9	1.44E+02	7.85E-02	1.44E+02	9928	0.01	163	0.072	1.00	0.1	0.9	5.56E+01	1.76E-02	5.56E+01
Lead	11.2	60.5	0.82	0.066	0.43	0.1	0.9	1.82E+01	8.86E-05	1.82E+01	5.4	38.6	6.0	0.066	0.43	0.1	0.9	1.16E+01	6.47E-04	1.16E+01
Manganese	599	6.1	28.1	0.505	1.0	0.1	0.9	2.78E+01	3.04E-03	2.78E+01	442	3.8	16.3	0.505	1.0	0.1	0.9	2.00E+01	1.76E-03	2.00E+01
Mercury	0.01	0.06	0.10	1.74	1.0	0.1	0.9	4.39E-02	1.08E-05	4.39E-02	0.03	0.04	0.07	1.74	1.0	0.1	0.9	2.91E-02	7.72E-06	2.91E-02
Molybdenum	0.28	0.15	0.34	1.15	1.0	0.1	0.9	1.30E-01	3.68E-05	1.30E-01	0.55	0.15	1.2	1.15	1.0	0.1	0.9	1.54E-01	1.26E-04	1.54E-01
Nickel	21.0	0.20	0.76	1.3	1.0	0.1	0.9	2.31E+00	8.23E-05	2.31E+00	13.3	0.14	1.3	1.42	1.0	0.1	0.9	1.57E+00	1.46E-04	1.57E+00
Selenium	0.30	0.70	1.7	0.43	0.44	0.1	0.9	2.20E-01	1.84E-04	2.20E-01	0.70	0.56	0.51	0.996	0.44	0.1	0.9	1.95E-01	5.56E-05	1.95E-01
Strontium	257	0	169	1.00	1.0	0.1	0.9	2.00E+01	1.82E-02	2.00E+01	230	0	139	1.00	1.0	0.1	0.9	1.78E+01	1.50E-02	1.78E+01
Thallium	20.0	0.02	2.6	0.71	1.0	0.1	0.9	1.11E+00	2.76E-04	1.11E+00	2.8	0.15	0.58	0.71	1.0	0.1	0.9	2.58E-01	6.31E-05	2.58E-01
Vanadium	29.7	0.20	0.57	0.918	1.0	0.1	0.9	2.26E+00	6.21E-05	2.26E+00	21.5	0.14	0.92	0.68	1.0	0.1	0.9	1.24E+00		
Zinc	72.0	33.9	24.3	2.6	1.0	0.1	0.9	3.83E+01	2.62E-03	3.83E+01	28.8	24.4	7.3	2.52	1.0	0.1	0.9	2.27E+01		2.27E+01

Note: The metals shown in this Attachment are those identified as surface water, fish, and sediment COPECs in the impacted reach of School House Brook.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor for benthic invertebrates

BAV - Bioavailability Adjustment Factor

*-Aluminum, antimony, arsenic, cobalt, copper, iron, lead, mercury, nickel, and zinc were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE value represents the mean concentration. Silver and Thallium were not analyzed for in fish

**- Antimony, arsenic, beryllium, molybdenum, and thallium were not selected as fish COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration. Strontium was not analyzed for in fish, value is zero.

0.016

***- Beryflum, mercury, selentum, and thatium were not selected as surface water COPECs. The RME value represents the meximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

- - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2008). No value for iron was listed, 100% bioavailability was assumed.

Equations

Cobalt

1 EDD_{diet} = IR_{diet} X C_{tah} X DF₁ X AUF X BAV / BW

2 EDD water = IR water X C water X AUF / BW

3 Total EDD = EDD det + EDD water

Area Use Factor (AUF) Body Weight (BW) 0.148 0.115

BSAF Calculations

0.395+(0.121*[sediment]) 1.422*[sediment]*.40

-1.531+(0.722*LN[sediment]) Vanadium

Attachment 5.58 Estimated Daily Doses for Belted Kingfishers at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

							E	DD			1			T -			EC	OD		
		RME					(mg/kc	bw-day)			200	CTE					(ma/ka	bw-day)		ı
	Expos	sure Point Concentration				Diet		·	Water		Expos	ure Point Concentration				Diet			Water	T
				1						1					Г		T			1 '
·										1										'
	Sediment	Fish	Surface Water							Total	Sediment	Fish	Surface Water]		Total
COPECs	(mg/kg, wet weight)*	(mg/kg, wet weight)**	(ug/L)***	BSAFs	BAV~	DF _{Invertebrates}	DF _{Fish}	Dose _{diet} 1	Dose _{water} ²	EDD	(mg/kg, wet weight)*	(mg/kg, wet weight)**	(ug/L)***	BSAFs	BAV~	DFinvertebrates	DFFlah	EDD _{diet} 1	EDD _{water} ²	EDD3
Metals	l	<u> </u>	.)	-I	L			L	I		B	1,	J	<u> </u>			7 3517		11111	1 222
Aluminum	14000	16.8	380	0.098	1.0	0.1	0.9	1.18E+02	4.11E-02	1.18E+02	7847	7.1	172	0.098	1.0	0.1	0.9	6.47E+01	1.86E-02	6.47E+01
Antimony	1.8	0.05	0.76	0.2	1.0	0.1	0.9	6.29E-02	8.22E-05	6.30E-02	3.7	0.05	10.4	0.2	1.0	0.1	0.9	9.23E-02	1.12E-03	9.34E-02
Arsenic	5.0	0.15	0.20	0.127	1.0	0.1	0.9	1.54E-01	2.16E-05	1.54E-01	2.6	0.15	25.5	0.127	1.0	0.1	0.9	1.31E-01	2.76E-03	1.33E-01
Barium	90.0	2,4	19.4	0.951	1.0	0.1	0.9	8.32E+00	2.10E-03	8.33E+00	46.3	1.7	19.9	0.951	1.0	0.1	0.9	4.60E+00	2.15E-03	4.60E+00
Beryllium	1.8	0.01	5.0	0.13	1.0	0.1	0.9	2.17E-02	5.41E-04	2.22E-02	0.40	0.01	2.8	0.13	1.0	0.1	0.9	7.49E-03	3.00E-04	7.79E-03
Cadmium	` 0.18	0.07	0.09	3.07	1.0	0.1	0.9	9.19E-02	9.62E-06	9.19E-02	0.62	0.04	0.96	3.07	1.0	0.1	0.9	1.76E-01	1.04E-04	1.77E-01
Chromium	31.5	0.30	1.2	0.588	1.0	0.1	0.9	1.65E+00	1.30E-04	1.65E+00	18.9	0.27	3.0	0.588	1.0	0.1	0.9	1.05E+00	3.27E-04	1.05E+00
Cobalt	28.5	0.09	0.67	3.8	1.0	0.1	0.9	8.57E+00	7.28E-05	8.57E+00	9.3	0.07	3.5	1.52	1.0	0.1	0.9	1.15E+00	3.78E-04	1.15E+00
Copper	127	3.5	23.9	2.36	0.53	0.1	0.9	1.36E+01	2.58E-03	1.36E+01	76.3	2.1	13.3	2.28	0.53	0.1	0.9	7.93E+00	1.44E-03	7.93E+00
Iron	22800	50.8	332	0.072	1.0	0.1	0.9	1.63E+02	3.59E-02	1.63E+02	10694	32,4	196	0.072	1.00	0.1	0.9	8.25E+01	2.12E-02	8.25E+01
Lead	11.0	0.04	0.43	0.066	0.43	0.1	0.9	3.63E-02	4.64E-05	3.63E-02	6.0	0.02	4.5	0.066	0.43	0.1	0.9	1.94E-02	4.83E-04	1.99E-02
Manganese	475	6.4	34.3	0.505	1.0	0.1	0.9	2.31E+01	3.71E-03	2.32E+01	355	4,6	28.8	0.505	1.0	0.1	0.9	1.72E+01	3.11E-03	1.72E+01
Mercury (inorganic)	0.02	0.02	0.20	1.74	1.0	0.1	0.9	1.86E-02	2.16E-05	1.87E-02	0.03	0.01	0.10	1.74	1.0	0.1	0.9	1.50E-02	1.05E-05	1.50E-02
Molybdenum	1.1	0.15	0.17	1.15	1.0	0.1	0.9	2.03E-01	1.87E-05	2.03E-01	0.92	0.15	1.17	1.15	1.0	0.1	0.9	1.87E-01	1.26E-04	1.88E-01
Nickel	21.0	0.20	1.5	1.3	1.0	0.1	0.9	2.31E+00	1.61E-04	2.32E+00	12.6	0.14	3.6	1.38	1.0	0.1	0.9	1.45E+00	3.85E-04	1.45E+00
Selenium	0.81	0.50	5.8	1.15	0.44	0.1	0.9	1.86E-01	6.27E-04	1.86E-01	1.6	0.36	1.9	2.32	0.44	0.1	0.9	2.41E-01	2.09E-04	2.41E-01
Silver	0.57	0	0.03	0.18	1.0	0.1	0.9	7.97E-03	3.46E-06	7.98E-03	0.72	0	1.0	0.18	1.0	0.1	0.9	1.01E-02	1.10E-04	1.02E-02
Strontium	193	0	149	1.00	1.0	0.1	0.9	1.50E+01	1.61E-02	1.50E+01	193	0	129	1.00	1.0	0.1	0.9	1.50E+01	1.39E-02	1.50E+01
Thallium	13.8	0.02	12.5	0.71	1.0	0.1	0.9	7.69E-01	1.35E-03	7.70E-01	4.5	0.02	2.1	0.71	1.0	0.1	0.9	2.61E-01	2.22E-04	2.61E-01
Vanadium '	49.0	0.1	0.91	1.28	1.0	0.1	0.9	4.94E+00	9.84E-05	4.94E+00	19.8	0.10	3.9	0.62	1.0	0.1	0.9	1.03E+00	4.23E-04	1.03E+00
Zinc	58.7	41.6	629	2.6	1.0	0.1	0.9	4.09E+01	6.80E-02	4.09E+01	43.6	33.6	93.7	2.56	1.0	0.1	0.9	3.22E+01	1.01E-02	3.22E+01

Note: The metals shown in this Attachment are those identified as surface water, fish, and sediment COPECs in the east branch of the Ompompanoosus River.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day COPECs - Chernicals of Potential Ecological Concern EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure CTE - Central Tendency Exposure

DF - Dose Fraction

BAV - Ringvallability Adjustment Factor

BSAF - Biota-Sediment Accumulation Factor for benthic invertebrates

* - Aluminum, anlimony, arsenic, cadmium, chromium, cobalt, iron, lead, mercury, nickel, and vanadium were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE value represents the mean concentration.

** - Antimony, arsenic, beryllium, motybdenum, thallium, and vanadium were not selected as fish COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration. The CTE value represents the mean concentration. Silver and strontium were not analyzed for in fish.

*** - Beryllium, silver, and thallium were not selected as surface water COPECs. Value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

-- Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed. Equations

1 EDD_{det} = IR_{det} X C_{fish} X DF_i X AUF X BAV / BW 2 EDD water = IR water X Cvater X AUF / BW

3 Total EDD = EDD det + EDD water

Area Use Factor (AUF) 1.0 Body Weight (BW) 0.148

IR_{det} 0.115

IR_{woter} 0.016

BSAF Calculations

Cobalt 0.395+(0.121*[sediment]) 1.422"[sediment]"0.40 Selenium -1.531+(0.722*LN[sediment]) Vanadium

Attachment 5.59 Estimated Daily Dose for Belted Kingfishers at the Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME					ED mg/kg t					СТЕ					EC mg/kg l	D bw-day)		
	Expos	sure Point Concentration				Diet			Water		. Expos	ure Point Concentration				Diet			Water	
	Sediment	Fish	Surface Water							Total	Sediment	Fish Tissue	Surface Water					·		Total
COPECs	(mg/kg, wet weight)*	(mg/kg, wet weight)**	(ug/L)***	BSAFs	BAV~	DF _{invertebrates}	DF _{Fish}	EDD _{diet} 1	EDD _{water} ²	EDD	(mg/kg, wet weight)*	(mg/kg, wet weight)**	(ug/L)***	BSAFs	BAV~	DF _{Invertebrates}	DFFish	EDD _{diet} 1	EDD _{water} ²	EDD
Metals	······································		·	·····	·	h a.a		·							4	***************************************				
Aluminum	6600	8.9	357	0.098	1.0	0.1	0.9	5.65E+01	3.86E-02	5.65E+01	5600	6.4	178	0.098	1.0	0.1	0.9	4.71E+01	1.93E-02	4.71E+01
Antimony	0.19	0.10	0.07	0.2	1.0	0.1	0.9	7.29E-02	7.03E-06	7.29E-02	3.5	0.07	9,4	0.2	1.0	0.1	0.9	1.01E-01	1.01E-03	1.02E-01
Arsenic	3.0	0.15	100	0.127	1.0	0.1	0.9	1.35E-01	1.08E-02	1.45E-01	4.9	0.15	45.8	0.127	1.0	0.1	0.9	1.53E-01	4.95E-03	1.58E-01
Barium	187	2.3	26.0	0.951	1.0	0.1	0.9	1.54E+01	2.81E-03	1.54E+01	79.4	2.2	21,3	0.951	1.0	0.1	0.9	7.37E+00	2.30E-03	7.37E+00
Beryllium	1.6	0.005	5.0	0.13	1.0	0.1	0.9	1.97E-02	5.41E-04	2.02E-02	0.75	0.01	4.1	0.13	1.0	0.1	0.9	1.11E-02	4.44E-04	1.15E-02
Cadmium	1.5	0.04	2.5	3.07	1.0	0.1	0.9	3.86E-01	2.70E-04	3.86E-01	0.53	0.03	2.1	3.07	1.0	0.1	0.9	1.44E-01	2.25E-04	1.44E-01
Chromium	37	0.40	1.3	0.588	1.0	0.1	0.9	1.97E+00		1.97E+00	20.9	0.33	3.8	0.588	1.0	0.1	0.9	1.19E+00	4.11E-04	1,19E+00
Cobalt	4.5	0.02	0.24	0.94	1.0	0.1	0.9	3.42E-01		3.43E-01	2.8	0.02	2.0	0.73	1.0	0.1	0.9	1.69E-01	2.13E-04	1.69E-01
Соррег	4.5	2.1	1.1	1.77	0.53	0.1	0.9	1.11E+00	1.19E-04	1.11E+00	3.2	1.2	2,7	1.77	0.53	0.1	0.9	6.91E-01	2.92E-04	6.91E-01
iron	6420	33.5	318	0.072	1.00	0.1	0.9	5.93E+01	3.44E-02	5.94E+01	4383	30.9	166	0.072	1.00	0.1	0.9	4.61E+01	1.80E-02	4.62E+01
Lead	9.6	0.03	0.50	0.066	.0.43	0.1	0.9	3.02E-02		3.02E-02	7.5	0.03	7.2	0.066	0.43	0.1	0.9	2.46E-02	7.74E-04	2.53E-02
Manganese	475	5.5	32.2	0.505	1.0	0.1	0.9	2.25E+01	3.48E-03	2.25E+01	278	5.3	24.1	0.505	1.0	0.1	0.9	1.46E+01	2.61E-03	1.46E+01
Mercury	0.03	0.03	0.05	1.74	1.0	0.1	0.9	2.22E-02	5.41E-06	2.22E-02	0.02	0.02	0.05	1.74	1.0	0.1	0.9	1.83E-02	5.41E-06	1.83E-02
Molybdenum	0.16	0.15	0.20	1.15	1.0	0.1	0.9	1.19E-01	2.16E-05	1.19E-01	0.16	0.15	1.2	1.15	1.0	0.1	0.9	1.19E-01	1.30E-04	1.19E-01
Nickel	11.7	0.20	0.65	1.44	1.0	0.1	0.9	1.45E+00	7.03E-05	1.45E+00	7.8	0.20	1.7	1.51	1.0	0.1	0.9	1.05E+00	1.86E-04	1.05E+00
Selenium	5.0	0.40	1.7	7.11	0.44	0.1	0.9	1.34E+00	1.84E-04	1.34E+00	. 1.81	0.40	0.37	2.57	0.44	0.1	0.9	2.82E-01	3.98E-05	2.82E-01
Silver	0.28	0	. 0.02	0.18	1.0	0.1	0.9	3.92E-03		3.92E-03	0.76	0	0.58	0.18	1.0	0.1	0.9	1.06E-02	6.30E-05	1.07E-02
Strontium	198	0	197	1.00	1.0	0.1	0.9	1.54E+01	2.13E-02	1.54E+01	198	0	133	11	1.0	0.1	0.9	1.54E+01	1.44E-02	1.54E+01
Thallium	17.5	0.02	2.6	0.71	1.0	0.1	0.9	9.76E-01	2.76E-04	9.76E-01	9.1	0.02	0.41	0.71	1.0	0.1	0.9	5.10E-01	4.42E-05	5.10E-01
Vanadium	38.0	0.10	0.91	1.10	1.0	0.1	0.9	3.30E+00		3.30E+00	20.3	0.10	0.86	0.64	1.0	0.1	0.9	1.09E+00	9.31E-05	1.09E+00
Zinc	33.0	42.5	10.7	2.53	1.0	0.1	0.9	3.62E+01	1.16E-03	3.62E+01	22.2	39.0	4.4	2.49	1.0	0.1	0.9	3.16E+01	4.75E-04	3.16E+01

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure BSAF - Biota-Sediment Accumulation Factor for benthic invertebrates BAV - Bioavailability Adjustment Factor

*- Aluminum, antimony, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver, vanadium, and zinc were not selected as sediment COPECs. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration. Silver and Strontium were not analyzed for.

** - Silver and strontium were no analyzed for in fish, value equal to zero.

*** - Beryflum, calmium, mercury, selenium, and thalikum were not selected as surface water COPECs. The RME value represents the mean concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

~ - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS. 2006). No value for iron or strontium was listed, 100% bloavailability was assumed.

Equations

3 Total EDD = EDD_{det} + EDD_{wester}

1 EDD_{det} = IR_{det} X C_{foh} X DF, X AUF X BAV / BW

2 EDD Harry = IR water X Cween X AUF / BW

Area Use Factor (AUF) 1.0 Body Weight (BW) 0.148

IR_{det} 0.115

IR 0.016

BSAF Calculations

0.395+(0.121*[sediment]) 1.422*[sediment]*.40 Cobalt Selenkim -1.531+(0.722*LN[sediment]) Vanadium

Attachment 5.60 Estimated Daily Doses for Mink at School House Brook Ely Copper Mine Superfund Site, Vershire, VT

					EDI)						E	DD	
	RME				(mg/kg b	w-day)		CTE				(mg/kg	bw-day)	
	Exposure Point Co	ncentration		Diet		Water		Exposure Point Co	ncentration		D	iet	Water	
	,							•						
														1
	Fish Tissue	Surface Water	1				Total	Fish Tissue	Surface Water					Total
COPECs	(mg/kg, wet weight)~	(ug/L)	BAV*	DF	EDD _{diet} 1	EDD _{water} ²	EDD	(mg/kg, wet weight)~	(ug/L)	BAV*	DF	EDD _{dlet} 1	EDD _{water} ²	EDD
Metals			4		<u></u>			<u> </u>						
Aluminum	12.4	494	1.0	1.0	2.47E+00	4.89E-02	2.52E+00	5.7	395	1.0	1.0	1.13E+00	3.91E-02	1.17E+00
Antimony	0.40	0.67	1.0	1.0	7.98E-02	6.63E-05	7.99E-02	0.12	13.6	1.0	1.0	2.33E-02	1.35E-03	2.46E-02
Arsenic	0.15	0.19	1.0	1.0	2.99E-02	1.88E-05	2.99E-02	0.15	32.5	1.0	1.0	2.99E-02	3.21E-03	3.31E-02
Barium	2.3	18.8	1.0	1.0	4.61E-01	1.86E-03	4.63E-01	1.8	17.4	1.0	1.0	3.56E-01	1.72E-03	3.58E-01
Cadmium	0.07	0.23	0.54	1.0	7.54E-03	2.25E-05	7.56E-03	0.04	0.41	0.54	1.0	4.19E-03	4.04E-05	4.23E-03
Chromium	0.50	2.0	0.09	1.0	8.98E-03	1.96E-04	9.17E-03	0.38	3.0	0.09	1.0	6.78E-03	2.98E-04	7.08E-03
Cobalt	0.11	6.8	1.0	1.0	2.19E-02	6.69E-04	2.26E-02	0.06	4.6	1.0	1.0	1.13E-02	4.52E-04	1.18E-02
Copper	7.9	222	1.0	1.0	1.58E+00	2.19E-02	1.60E+00	4.6	117	1.0	1.0	9.11E-01	1.16E-02	9.23E-01
Iron	46.9	569	1.0	1.0	9.36E+00	5.63E-02	9.41E+00	34.7	414	1.0	1.0	6.93E+00	4.10E-02	6.97E+00
Lead	1.2	2.4	1.0	1.0	2.33E-01	2.38E-04	2.34E-01	0.15	3.8	1.0	1.0	2.95E-02	3.76E-04	2.99E-02
Manganese	4.2	67.0	1.0	1.0	8.44E-01	6.63E-03	8.51E-01	3.6	41.5	1.0	1.0	7.19E-01	4.11E-03	7.23E-01
Mercury (inorganic)	0.02	0.17	0.25	1.0	1.05E-03	1.68E-05	1.06E-03	0.01	0.09	0.25	1.0	**********************	9.17E-06	6.46E-04
Molybdenum	0.15	0.18	1.0	1.0	2.99E-02	1.76E-05	2.99E-02	0.15	1.6	1.0	1.0	2.99E-02	1.61E-04	3.01E-02
Nickel	0.20	3.3	1.0	1.0	3.99E-02	3.31E-04	4.02E-02	0.17	3.1	1.0	1.0	3.44E-02	3.07E-04	3.47E-02
Selenium	0.50	8.5	0.57	1.0	5.69E-02	8.42E-04	5.77E-02	0.41	1.8	0.57	1.0	Construction of the control of the c	1.74E-04	4.69E-02
Silver	0	0.67	1.0	1.0		6.63E-05	6.63E-05	0	0.97	1.0	1.0		9.62E-05	9.62E-05
Strontium	0	160	1.0	1.0	0.00E+00	A STREET, STRE	1.58E-02	0	142	1.0	1.0		1.41E-02	1.41E-02
Vanadium	0.10	0.53	1.0	1.0	2.00E-02		2.00E-02	0.10	2.2	1.0	1.0	****************************	2.18E-04	2.02E-02
Zinc	40.9	37.6	1.0	1.0		3.72E-03	8.16E+00	34.1	23.5	1.0	1.0	6.81E+00	2.32E-03	6.81E+00

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the impacted reach of School House Brook.

mg/kg, wt - milligrams per kilogram, weight wet

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

DF - Dose Fraction of fish

BAV - Bioavailability Adjustment Factor

~ Arsenic and molybdenum were not selected as COPECs in fish, value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. Silver and strontium were not analyzed for in fish, values are zero.

* - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron and strontium was listed, 100% bioavailability was assumed. Equations

1 Dose_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

2 Dose_{water} = IR_{water} X C_{water} X AUF / BW

3 Total Dose = Dose_{diet} + Dose_{water}

Area Use Factor (AUF) 1.0

Body Weight (BW) 1.0

IR_{diet} 0.1995

IR_{water} 0.099

Attachment 5.61 Estimated Daily Doses for Mink at the Reference Section of School House Brook Ely Copper Mine Superfund Site, Vershire, VT

					ED	D	:					E	OD	
	RME				_(mg/kg b	ow-day)	1.4	CTE				(mg/kg	bw-day)	
	Exposure Point Co	ncentration		Die	et	Water		Exposure Point Co	oncentration		Di	et	Water	
	Fish Tissue	Surface Water					Total	Fish Tissue	Surface Water					Total
COPECs	(mg/kg, wet weight)**	(ug/L)~	BAV*	DF	Dose _{diet} 1	Dose _{water} ²	EDD	(mg/kg, wet weight)	_(ug/L)~	BAV*	DF	EDD _{diet} ¹	EDD _{water} ²	EDD
Metals													***************************************	
Aluminum	26.5	599	1.0	1.0	5.29E+00	5.93E-02	5.35E+00	9.3	183	1.0	1.0	1.86E+00	1.81E-02	1.88E+00
Antimony	0.05	0.10	1.0	1.0	9.98E-03	9.90E-06	9.98E-03	0.05	11.3	1.0	1.0	9.98E-03	1.12E-03	1.11E-02
Arsenic	0.15	0.18	1.0	1.0	2.99E-02	1.78E-05	2.99E-02	0.15	31.7	1.0	1.0	2.99E-02	3.14E-03	3.31E-02
Barium	1.1	19.5	1.0	1.0	2.25E-01	1.93E-03	2.27E-01	0.58	16.6	1.0	1.0	1.16E-01	1.64E-03	1.18E-01
Cadmium	0.08	0.02	0.54	1.0	8.62E-03	1.98E-06	8.62E-03	0.05	1.1	0.54	1.0	5.23E-03	1.08E-04	5.34E-03
Chromium	0.60	3.0	0.09	1.0	1.08E-02	2.97E-04	1.11E-02	0.46	2.7	0.09	1.0	8.21E-03	2.66E-04	8.47E-03
Cobalt	0.06	0.50	1.0	1.0	1.20E-02	4.95E-05	1.20E-02	0.04	1.3	1.0	1.0	8.55E-03	1.29E-04	8.68E-03
Copper	1.9	1.3	1.0	1.0	3.79E-01	1.26E-04	3.79E-01	1.4	1.6	1.0	1.0	2.88E-01	1.54E-04	2.88E-01
Iron	0.02	726	1.0	1.0	3.59E-03	7.19E-02	7.55E-02	0.01	163	1.0	2.0	4.05E-03	1.61E-02	2.01E-02
Lead	60.5	0.82	1.0	1.0	1.21E+01	8.12E-05	1.21E+01	38.6	6.0	1.0	1.0	7.70E+00	5.93E-04	7.70E+00
Manganese	6.10	28.1	1.0	1.0	1.22E+00	2.78E-03	1.22E+00	3.81	16.3	1.0	1.0	7.61E-01	1.61E-03	7.62E-01
Mercury	0.06	0.10	0.25	1.0	2.99E-03	9.90E-06	3.00E-03	0.04	0.07	0.25	1.0	1.78E-03	7.07E-06	1.79E-03
Molybdenum	0.15	0.34	1.0	1.0	2.99E-02	3.37E-05	3.00E-02	0.15	1.2	1.0	1.0	2.99E-02	1.15E-04	3.00E-02
Nickel	0.20	0.76	1.0	1.0	3.99E-02	7.53E-05	4.00E-02	0.14	1.3	1.0	1.0	2.85E-02	1.33E-04	2.86E-02
Selenium	0.70	1.7	0.57	1.0	7.96E-02	1.68E-04	7.98E-02	0.56	0.51	0.57	1.0	6.34E-02	5.09E-05	6.34E-02
Silver	0	2.5	1.0	1.0	0.00E+00	2.48E-04	2.48E-04	0	0.44	1.0	1.0	0.00E+00	4.32E-05	4.32E-05
Strontium	0	169	1.0	1.0	0.00E+00	1.67E-02	1.67E-02	0	139	1.0	1.0	0.00E+00	1.37E-02	1.37E-02
Vanadium	0.20	0.57	1.0	1.0	3.99E-02	5.68E-05	4.00E-02	0.14	0.92	1.0	1.0	2.85E-02	9.13E-05	2.86E-02
Zinc	33.9	24.3	1.0	1.0	6.76E+00	2.40E-03	6.77E+00	24.4	7.3	1.0	1.0	4.87E+00	7.23E-04	4.87E+00

mg/kg, wt - milligrams per kilogram, weight wet

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction of fish

- * Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron was listed, 100% bioavailability was assumed.
- ~ Mercury and selenium were not selected as COPECs in surface water. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE value represents the mean concentration.

Equations

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

3 Total EDD = EDDdiet + EDDwater

Area Use Factor (AUF 1.0 Body Weight (BW) 1.0 IR_{diet} 0.1995

IR_{water}

0.099

^{** -} Antimony, arsenic, and molybdenum were not selected as COPECs in fish. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit. The CTE value represents the mean concentration.

Attachment 5.62 Estimated Daily Doses for Mink at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

	RME	•			ED (mg/kg b		·	CTE	MARKET AND AND ADDRESS OF THE ADDRES			ED (mg/kg b		
	Exposure Point Cor	ncentration		Diet		Water		Exposure Point Cor	ncentration		Die	et	Water	
COPECs	Fish Tissue (mg/kg, wet weight)~	Surface Water (ug/L)	BAV*	DF	EDD 1	EDD _{water} ²	Total EDD	Fish Tissue (mg/kg, wet weight)~	Surface Water (ug/L)	BAV*	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD
Metals					<u></u>									
Aluminum	16.8	380	1.0	1.0	3.35E+00	3.76E-02	3.39E+00	7.1	172	1.0	1.0	1.42E+00	1.70E-02	1.44E+00
Antimony	0.05	0.76	1.0	1.0	9.98E-03	7.52E-05	1.01E-02	0.05	10.4	1.0	1.0	9.98E-03	1.03E-03	1.10E-02
Arsenic	0.15	0.20	1.0	1.0	2.99E-02	1.98E-05	2.99E-02	0.15	25.5	1.0	1.0	2.99E-02	2.53E-03	3.25E-02
Barium	2.4	19.4	1.0	1.0	4.77E-01	1.92E-03	4.79E-01	1.7	19.9	1.0	1.0	3.34E-01	1.97E-03	3.36E-01
Cadmium	0.07	0.09	0.54	1.0	7.54E-03	8.81E-06	7.55E-03	0.04	1.0	0.54	1.0	4.58E-03	9.49E-05	4.67E-03
Chromium	0.30	1.2	0.09	1.0	5.39E-03	1.19E-04	5.51E-03	0.27	3.0	0.09	1.0	4.83E-03	2.99E-04	5.12E-03
Cobalt	0.09	0.67	1.0	1.0	1.80E-02	6.66E-05	1.80E-02	0.07	3.5	1.0	1.0	1.35E-02	3.46E-04	1.38E-02
Copper	3.5	23.9	1.0	1.0	6.98E-01	2.37E-03	7.01E-01	2.1	13.3	1.0	1.0	4.16E-01	1.32E-03	4.18E-01
Iron	50.8	332	1.0	1.0	1.01E+01	3.28E-02	1.02E+01	32.4	196	1.0	1.0	6.45E+00	1.94E-02	6.47E+00
Lead	0.04	0.43	1.0	1.0	7.98E-03	4.25E-05	8.02E-03	0.02	4.5	1.0	1.0	4.11E-03	4.42E-04	4.56E-03
Manganese	6.4	34.3	1,0	1.0	1.28E+00	3.40E-03	1.29E+00	4.6	28.8	1.0	1.0	9.27E-01	2.85E-03	9.30E-01
Mercury	0.02	0.20	0.25	1.0	1.10E-03	1.98E-05	1.12E-03	0.01	0.10	0.25	1.0	7.36E-04	9.63E-06	7.45E-04
Molybdenum	0.15	0.17	1.0	1.0	2.99E-02	1.71E-05	2.99E-02	0.15	1.2	1.0	1.0	2.99E-02	1.15E-04	3.00E-02
Nickel	0.20	1.49	1.0	1.0	3.99E-02	1.48E-04	4.00E-02	0.14	3.6	1.0	1.0	2.87E-02	3.53E-04	2.90E-02
Selenium	0.50	5.8	0.57	1.0	5.69E-02	5.74E-04	5.74E-02	0.36	1.9	0.57	1.0	4.12E-02	1.91E-04	4.14E-02
Strontium	0	149	1.0	1.0	0.00E+00	1.48E-02	1.48E-02	0	129	1.0	1.0	0.00E+00	1.28E-02	1.28E-02
Vanadium	0.10	0.91	1.0	1.0	2.00E-02	9.01E-05	2.00E-02	0.10	3.9	1.0	1.0	2.00E-02	3.87E-04	2.03E-02
Zinc	41.6	629	1.0	1.0	8.30E+00	6.23E-02	8.36E+00	33.6	93.7	1.0	1.0	6.71E+00	9.28E-03	6.72E+00

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the east branch of the Ompompanoosuc River.

mg/kg, wt - milligrams per kilogram, weight wet

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction of fish

BAV - Bioavailability Adjustment Factor

- * Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed.
- ~ Antimony, arsenic, molybdenum, and vanadium were not selected as COPECs in fish. The RME value represents the maximum detected concentration or if not detected one half of the maximum non-detect detection limit.

The CTE value represents the mean concentration.

Strontium was not analyzed for in fish tissue, value is zero. Equations

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

3 Total EDD = EDD_{diet} + EDD_{water}

Area Use Factor (AUF) 1.0

Body Weight (BW) 1.0

IR_{diet} 0.1995

IR_{water} 0.099

Attachment 5.63 Estimated Daily Dose for Mink at the Upstream Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

						DD					**********	E	DD	· · · · · · · · · · · · · · · · · · ·
	RME					g bw-day)		CTE		<u> </u>		(mg/kg	bw-day)	
	Exposure Point Con	centration	<u> </u>	D	iet	Water		Exposure Point Co	oncentration		D	iet	Water	
	•													
COPECs	Fish Tissue (mg/kg, wet weight)**	Surface Water (ug/L)	BAV*	DF	Dose _{diet} 1	Dose _{water} ²	Total EDD	Fish Tissue (mg/kg, wet weight)	Surface Water (ug/L)	BAV*	DF	EDD _{diet} 1	EDD _{water} ²	Total EDD
Metals														
Aluminum	8.9	357	1.0	1.0	1.78E+00	3.54E-02	1.81E+00	6.4	178	1.0	1.0	1.27E+00	1.76E-02	1.29E+00
Antimony	0.10	0.07	1.0	1.0	2.00E-02	6.44E-06	2.00E-02	0.07	9.4	1.0	1.0	1.33E-02	9.26E-04	1.42E-02
Arsenic	0.15	100	1.0	1.0	2.99E-02	9.90E-03	3.98E-02	0.15	45.8	1.0	1.0	2.99E-02	4.53E-03	3.45E-02
Barium	2.3	26.0	1.0	1.0	4.63E-01	2.57E-03	4.65E-01	2.2	21.3	1.0	1.0	4.30E-01	2.11E-03	4.32E-01
Cadmium	0.04	2.5	0.54	1.0	4.31E-03	2.48E-04	4.56E-03	0.03	2.1	0.54	1.0	2.87E-03	2.06E-04	3.08E-03
Chromium	0.40	1.3	0.09	1.0	7.18E-03	1.29E-04	7.31E-03	0.33	3.8	0.09	1.0	5.99E-03	3.76E-04	6.36E-03
Cobalt	0.02	0.24	1.0	1.0	3.99E-03	2.38E-05	4.01E-03	0.02	2.0	1.0	1.0	3.33E-03	1.95E-04	3.52E-03
Copper	2.1	1.1	1.0	1.0	4.19E-01	1.09E-04	4.19E-01	1.2	2.7	1.0	1.0	2.46E-01	2.67E-04	2.46E-01
Iron	33.5	318	1.0	1.0	6.68E+00	3.15E-02	6.71E+00	30.9	166	1.0	1.0	6.16E+00	1.65E-02	6.18E+00
Lead	0.03	0.50	1.0	1.0	5.99E-03	4.95E-05	6.03E-03	0.03	7.2	1.0	1.0	5.32E-03	7.08E-04	6.03E-03
Manganese	5.5	32.2	1.0	1.0	1.10E+00	3.18E-03	1.10E+00	5.3	24.1	1.0	1.0	1.05E+00	2.39E-03	1.06E+00
Mercury	0.03	0.05	0.25	1.0	1.30E-03	4.95E-06	1.30E-03	0.02	0.05	0.25	1.0	1.11E-03	4.95E-06	1.12E-03
Molybdenum	0.15	0.20	1.0	1.0	2.99E-02	1.98E-05	2.99E-02	0.15	1.2	1.0	1.0	2.99E-02	1.19E-04	3.00E-02
Nickel	0.20	0.65	1.0	1.0	3.99E-02	6.44E-05	4.00E-02	0.20	1.7	1.0	1.0	3.99E-02	1.70E-04	4.01E-02
Selenium	0.40	1.7	0.57	1.0	4.55E-02	1.68E-04	4.57E-02	0.40	0.37	0.57	1.0	4.55E-02	3.65E-05	4.55E-02
Strontium	0	197	1.0	1.0	0.00E+00	1.95E-02	1.95E-02	0	133	1.0	1.0	0.00E+00	1.32E-02	1.32E-02
Vanadium	0.10	0.91	1.0	1.0	2.00E-02	9.01E-05	2.00E-02	0.10	0.86	1.0	1.0	2.00E-02		2.00E-02
Zinc	42.5	10.7	1.0	1.0	8.48E+00	1.06E-03	8.48E+00	39.0	4.4	1.0	1.0			7.78E+00

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the east branch of the Ompompanoosuc River.

mg/kg, wt - milligrams per kilogram, weight wet

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction of fish

BAV - Bioavailability Adjustment Factor

**- Strontium was not analyzed for in fish, value is zero.

* - Source: Section 1.0 (mammals) and Section 2.0 (Birds) in Appendix S of the Elizabeth Copper Mine BERA (URS, 2006). No value for iron or strontium was listed, 100% bioavailability was assumed. Equations

1 EDD_{diet} = IR_{diet} X C_{fish} X DF_i X AUF X BAV / BW

2 EDD_{water} = IR_{water} X C_{water} X AUF / BW

3 Total EDD = EDD_{diet} + EDD_{water}

Area Use Factor (AUF) 1.0

Body Weight (BW) 1.0

IR_{diet} 0.1995

IR_{water} 0.099

SECTION 6.0: EFFECTS ANALYSIS

6.1 INTRODUCTION

The effects analysis is a qualitative and quantitative evaluation of the toxicity of the COPECs to the receptor groups of concern. The effects analysis for the aquatic portion of the Ely Copper Mine BERA consisted of the following three major components:

Toxicity-based benchmarks:

- sediment benchmarks
- surface water benchmarks
- CBRs for salmonids
- TRVs for birds and mammals

Toxicity testing:

- whole sediment toxicity testing using the amphipod H. azteca (28-day exposures) and the larvae
 of the midge fly C. tentans (10-day exposures)
- 96-hour acute toxicity testing of sediment pore water samples using C. tentans and H. azteca
- seven-day chronic toxicity testing of surface water samples using *P. promelas* (fathead minnow)
- in-situ toxicity testing at the on-site ponds using eggs and tadpoles of the wood frog (Rana sylvatica)

Field community surveys:

- benthic surveys
- fish surveys

6.2 TOXICITY-BASED BENCHMARKS

6.2.1 Sediment benchmarks

No effect and effect sediment benchmarks are used to assess the potential for ecological risk from exposure to contaminated substrate. The no effect sediment benchmarks are those used to select COPECs in the SLERA (see **Appendix 6**). The published sources of effects sediment benchmarks used in the evaluation are described below. This list is expanded from the one presented in the Elizabeth Copper Mine BERA (URS, 2006) by including effects benchmarks developed by Long et al. (1995) and Persaud et al. (1993) in order to complement the existing values. The order of preference (from highest preference to lowest preference) for selecting the effect sediment benchmarks is as follows:

- The Probable Effect Concentrations (PECs) (McDonald et al., 2000)
- The Effects Range Median (ER-Ms) (Long et al., 1995)
- Severe Effect Levels (SELs) Ontario Provincial Sediment Quality Guidelines (Persaud et al., 1993).

The consensus-based PECs represent contaminant levels at which harmful effects in benthic invertebrates are likely to be observed. The ER-Ms represent contaminant levels in sediment at which the incidence of effects are likely to be observed. Finally, the SELs represent contaminant levels at which the sediment is considered heavily polluted and likely to affect the health of sediment-dwelling organisms.

Attachment 6.1 presents all of the available effect sediment benchmarks for metals. The shaded values were retained for use in the BERA. **Exhibit 6.1** summarizes the COPEC-specific no effect and effect sediment benchmarks used in the risk characterization.

Exhibit 6.1: No effe	ect and effect sediment benchm	arks (mg/kg, dw)
COPEC	No Effect	Effect
Aluminum	25,500	NA
Antimony	12	NA
Arsenic	9.79	33
Barium	0.7	NA
Beryllium	NA	NA
Cadmium	0.99	4.98
Chromium	43.4	111
Cobalt	50	NA
Copper	31.6	149
Cyanide	0.0001	NA
Iron	a	40,000
Lead	35.8	128
Manganese	630	1,100
Mercury (inorganic)	0.17	1.06
Mercury (organic)	0.00001	NA
Molybdenum	NA	NA
Nickel	22.7	48.6
Selenium	0.29	NA
Silver	0.5	3.7
Strontium	NA	NA
Thallium	NA	NA
Tin	5.0	NA
Vanadium	50	NA
Zinc	121	459

NA = not available

6.2.2 Surface Water Benchmarks

Acute and chronic surface water benchmarks were used to assess the potential for ecological risk from exposure to surface water. The chronic benchmarks were the ones used for selecting COPECs in the SLERA (see **Appendix 6**). The published sources used to select acute surface water benchmarks were as follows:

Acute freshwater NRWQCs (USEPA, 2006)

^a the no effect benchmark for Fe equals188,400 mg/kg (dw), which exceeds the effect benchmark for this analyte by a factor of four. The lower effect benchmark is retained in order to make the assessment conservative

- Maximum Allowable Concentrations (MACs) (State of Vermont, 2006)
- Secondary Acute Values (SAVs) by Suter and Tsao (1996)

Both the acute NRWQCs and MACs represent the highest concentration of dissolved metals to which aquatic life can be exposed for a short period of time (one-hour average) once every three years without deleterious effects. The SAVs have been calculated based on the same general methodology developed for the acute NRWQC, except for using less complete toxicity data sets.

Attachment 6.2 presents the acute (effect) surface water benchmarks for metals. The shaded values were used in the BERA. The toxicity values for the hardness-dependent metals (i.e., Cd, Cr, Cu, Pb, Ni, Si [MAC only], and Zn) were standardized to 100 mg/L hardness. **Exhibit 6.2** summarizes the COPEC-specific no effect and effect surface water benchmarks.

Exhibit 6.2: Acute	and chronic surface water be	enchmarks (µg/L)
Analyte	Acute	Chronic
Aluminum	750	87
Antimony	180	80
Arsenic	340	150
Barium	110	^a
Beryllium	35	3.6
Cadmium	2.0	0.25
Chromium ^b	16	11
Cobalt	1,500	24
Copper	13	9.0
Cyanide	22	5.2
ron	NA	1,000
_ead	65	2.5
Manganese	2,300	120
Mercury (inorganic)	1.4	0.77
Mercury (organic)	0.099	0.00246
Molybdenum	16,000	370
Nickel	470	52
Selenium	20	5.0
Silver	3.2	0.32
Strontium	15,000	1,500
Γhallium	110	40
- Fin	2,700	180
/anadium	280	12
Zinc	120	120

 $^{^{\}rm a}$ the no effect benchmark for Ba equals 220 μ g/L, which exceeds the effect benchmark for this analyte by a factor of two. The lower effect benchmark is retained in order to make the assessment conservative

6.2.3 Critical Body Residues

CBRs represent conservative tissue concentrations in test organisms at which a particular response (or lack of response) has been reported following exposure to single contaminants. The CBRs (mg/kg ww) used in the Ely Mine BERA were derived from published literature data. These CBRs represent tissue residue data for salmonid species because brook trout (*Salvelinus fontinalis*) and juvenile Atlantic salmon (*Salmo salar*) are two critical fish species present in the waterways affected by the Site.

Appendix 7 describes the process used for developing the no effect and effect fish CBRs. **Exhibit 6.3** presents the final CBRs used in the BERA. CBRs were developed for each inorganic compound detected in at least one of the fish tissue samples collected from the waterways affected by the Site. CBRs were not developed if an inorganic compound was not detected in <u>any</u> of the fish tissue samples. Published fish residue data to develop CBRs for Barium (Ba), Beryllium (Be), Cobalt (Co), Iron (Fe), Manganese (Mn), Ag, and Thallium (Th) were not available. These metals, if present above their DLs in the field-collected whole fish samples, were treated as uncertainties in the risk characterization of the BERA.

Exhibi	t 6.3: Whole body CBRs for salm	nonids
	Critical Body Resid	dues (mg/kg, ww)
Chemical	No effect	Effect
Aluminum	4.2	13.5
Antimony	5.0	9.0
Arsenic	1.8	4.2
Barium	NA	NA
Beryllium	NA	NA
Cadmium	0.10	0.29
Chromium	0.58	NA
Cobalt	NA	NA
Copper	^a	2.4
Iron	NA	NA
Lead	3.8	4.0
Manganese	NA	NA
Mercury (inorganic)	^b	0.73
Mercury (organic)	c	4.3
Nickel	0.82	NA
Selenium	0.37	0.76
Silver	NA	NA
Thallium	NA	NA
Vanadium	0.02	0.41
Zinc	16.4	NA

NA = no data available

 $^{^{\}rm b}$ the benchmarks are for Cr(VI) which is substantially more toxic than Cr(III) NA = not available

6.2.4 Toxicity reference values for wildlife receptors

The Elizabeth Copper Mine BERA (URS, 2006) developed COPEC-specific No Observed Adverse Effect Level (NOAEL) TRVs (i.e., no effect TRVs) and Lowest Observed Adverse Effect Level (LOAEL) TRVs (i.e., effect TRVs) for birds and mammals. This reference should be consulted for details on the studies that were evaluated and the TRV selection process. **Exhibit 6.4** summarizes the final TRVs. These values were used in this BERA to asses the toxicity of COPECs that were modeled to be ingested by wildlife receptors feeding on fish or emerging insects at the waterways affected by the Site.

Ex	chibit 6.4: No effect	and effect TRVs f	or birds and mamma	ıls
	Bird red	eptors	Mammal r	eceptors
Analyte	No Effect TRVs ^a	Effect TRVs ^a	No Effect TRVs ^a	Effect TRVs ^a
Aluminum	NA	NA	NA	NA
Antimony	NA	NA	13.3	66.5
Arsenic	5.5	22	5.7	11.6
Barium	208	416	51.8	259
Beryllium	NA	NA	0.53	2.7
Cadmium	1.9	21.1	5.1	7.1
Chromium	37.7	75.4	8.8	44.2
Cobalt	7.61	38.1	7.3	36.7
Copper	33	62	11.7	15.1
Iron	NA	NA	NA	NA
Lead	7.4	37	34	80
Manganese	977	4,885	88	284
Mercury (inorg.)	0.45	0.91	13.2	56
Mercury (org.)	0.14	0.68	0.08	0.12
Molybdenum	7.1	35.3	2.6	13
Nickel	80	107	60	80
Selenium	0.4 ^a	0.8 ^a	0.35	1.05
Silver	14.5	43.6	44.4	222
Strontium	NA	NA	NA	NA
Thallium	NA	NA	0.2	1.0
Tin	NA	NA	NA	NA
Vanadium	11.38	56.9	5.9	8.3
Zinc	14.5	131	160	320
Cyanide	receptor-s	specific ^{b,c}	68.7	343.5

^a the no effect CBR for Cu (3.1 mg/kg ww) exceeded its effect CBR (2.4 mg/kg ww). Only the effect CBR will be used in the BERA.

^b the no effect CBR for inorganic Hg (0.84 mg/kg ww) exceeded its effect CBR (0.73 mg/kg ww). Only the effect CBR will be used in

^c the no effect CBR for organic Hg (7.0 mg/kg ww) exceeded its effect CBR (4.3 mg/kg ww). Only the effect CBR will be used in the BERA.

Source: Sections 5.1.3.3 (Birds) and 5.1.3.4 (Mammals), and Table 5-2 (for birds exposed to cyanide) in the Elizabeth Copper Mine BERA (URS. 2006)

all of the values have units of mg COPEC/kg BW/day NA = not available

The bird or mammal TRVs were not scaled to account for differences in body mass between the test species used to derive the TRV and the wildlife ROC used in the BERA. Such an approach was routinely applied in the 1990's, but has been shown to not be supported by the available scientific evidence. The rationale for avoiding body mass scaling is provided in Section 5.1.3.2 in the Elizabeth Copper Mine BERA (URS, 2006).

6.3 TOXICITY TESTING

6.3.1 Bulk sediment toxicity testing

Bulk sediment samples were collected on August 22 and 23, 2006 as follows (see also Figure 1 in **Appendix 8**):

- Three samples from the main stem of Ely Brook (EB2, EB3 and EB4), plus one reference sample in Ely Brook (EB1-ref) collected upstream of potential mining influences.
- Three samples from Schoolhouse Brook (SB3, SB4, and SB5a, and its duplicate SH5b), plus one reference sample collected above the confluence of Schoolhouse Brook with Ely Brook (SHB1-ref).
- One sample from the EBOR (OR-3) collected less than 0.5 miles downstream of the confluence with Schoolhouse Brook, plus one reference sample collected in the EBOR above the confluence (OR1-ref).

Twenty five to 30 representative subsamples at each sampling location were obtained across the stream channel and composited. The tests took place at the USGS Columbia Environmental Research Center (CERC) in Columbia, MO. The samples were evaluated for toxicity using eight-day old juveniles of the freshwater amphipod, *Hyallela azteca*, and about 10-day old (second instar stage) larvae of the midge insect, *Chironomus dilutus*. The amphipods were exposed for 28 days, whereas the midge larvae were exposed for 10 days. Each sediment sample was also characterized for metal concentrations and other physical and chemical properties (i.e., moisture content, particle size distribution, AVS-SEM, and TOC).

Eight replicates per sediment sample and the laboratory control were prepared for each species. Ten test organisms were introduced in each test beaker. The test was static-renewal, with two daily changes of the overlying water. The organisms were fed daily. The test endpoints were survival and growth (length) for the amphipods and survival and growth (ash-free dry weight) for the midges.

^a The no effect TRV = 1.6 mg Se/kg BW/day and the effect TRV = 3.2 mg Se/kg BW/day for the tree swallow and kingfisher

^b The no effect TRV = 3.3 mg CN/kg BW/day and the effect TRV = 4.3 mg CN/kg BW/day for the tree swallow

^c The no effect TRV = 0.52 mg CN/kg BW/day and the effect TRV = 0.68 mg CN/kg BW/day for the king fisher

Exhibit 6.5 summarizes the results and the outcome of the statistical analyses detailed in **Appendix 8**.

	Exhibit (6.5: Surviv	al and gro	wth in <i>H.</i>	<i>azteca</i> an	d <i>C. dilut</i> u	us expose	d to bulk s	ediment			
	Ely E	Brook			Scho	olhouse E	Brook		The E	BOR		
EB1- ref	EB2	EB3	EB4	SB1-ref	SB3	SB4	SB5a	SB5b ^a	OR1- ref	OR3		
			H. azted	ca (amphip	od) surviva	al (%) after	28 days					
93.8	68.8 [*]	6.3 [*]	91.3	93.8	52.5 [*]	64.3*	52.5 [*]	68.8*	93.8	91.3		
	H. azteca (amphipod) growth (mg) after 28 days											
3.24	2.45 [*]	1.96 [*]	3.39	3.31	2.43*	2.53*	2.55*	2.48*	3.21	3.17		
			C. dilu	utus (midge	e) survival	(%) after 1	0 days					
63.8	61.3	65	72.5	76.3	80	62.5	67.5	83.8	90	83.8		
			C. dilu	ıtus (midge	e) growth (i	ng) after 1	0 days					
0.47	0.37*	0.20*	1.56	0.46	0.26*	0.28*	0.31*	0.49	0.47	0.83		

^a Sample SHB5b is a duplicate of SHB5a

The toxicity test results can be summarized as follows:

H. azteca

The test met the Test Acceptability Criterion (TAC), with 93.8% survival (minimum required is 80% survival) observed in the laboratory control sample after 28 days of exposure.

Main stem of Ely Brook

Survival and growth in two of the three bulk sediment samples decreased significantly compared to the upstream reference sample. Surprisingly, EB4 was not toxic, even though this sample had the highest levels of Cu, both in the bulk sediment phase (5,950 mg/kg) and the filtered pore water phase (2,140 µg/L). These concentrations should have resulted in rapid and complete mortality. The reason for the lack of toxicity was not known. It was suspected that the renewal water (pH of 8.2 and alkalinity equal to 100 mg/L as CaCO₃) may have increased the pore water pH in this sample, thereby causing the dissolved metals to precipitate out and become non-bioavailable (see **Appendix 8**).

Schoolhouse Brook

Survival and growth in all bulk sediment samples decreased significantly compared to the upstream reference sample. These results indicated that the sediment in the entire portion of Schoolhouse Brook affected by AMD was toxic to amphipods down to the confluence with the EBOR.

The EBOR

Survival and growth in the one bulk sediment sample collected from the EBOR below the confluence with Schoolhouse Brook was no different from the upstream reference sample.

indicates that the response is significantly different from the reference

C. dilutus

The toxicity test met the TAC, with 86.3% survival (minimum required is 70% survival) observed in the laboratory control sample after 10 days of exposure.

Main stem of Ely Brook

Survival in the three bulk sediment samples was not different compared to the upstream reference sample from Ely Brook. One reason for this pattern may be that survival in the reference sample was relatively low (63.8%) and also fell below the TAC. However, growth was significantly lower in two of the three samples. The one exception was again EB4, even though this sample had the highest levels of Cu. The lack of apparent toxicity may have been due to chemical changes caused by the renewal water.

Schoolhouse Brook

Survival in all of the sediment samples did not differ significantly compared to the upstream reference sample, whereas growth was significantly reduced. However, growth in the duplicate sample (SB5b) did not differ from the upstream reference sample. Nonetheless, these results indicated that the substrate in the entire portion of Schoolhouse Brook affected by AMD was toxic to midge fly larvae down to the confluence with the EBOR.

The EBOR

Survival and growth in the one bulk sediment sample collected from the EBOR below the confluence with Schoolhouse Brook was no different from the upstream reference sample.

In summary, both test species responded negatively when exposed to bulk sediment from the main stem of Ely Brook and the AMD-impacted reach of Schoolhouse Brook. The one sediment sample collected from the EBOR less than 0.5 mile downstream from its confluence with Schoolhouse Brook was non toxic to either species. The toxic responses in the amphipods were stronger than those observed in the midges. One reason may be that the amphipods were exposed for longer (28 days) compared to the midges (10 days).

6.3.2 Sediment pore water toxicity testing

Sediment pore water samples were collected on August 22, 2006 as follows (see also Figure 1 in **Appendix 9**):

- Three samples from the main stem of Ely Brook (EB2, EB3 and EB4).
- One reference sample from Schoolhouse Brook above the confluence with Ely Brook (SB 1 REF).
- Three samples from Schoolhouse Brook between the confluence with Ely Brook and the EBOR (SB3 to SB5).
- One sample from the EBOR downstream from the confluence with Schoolhouse Brook (OMP3).

The pore water was collected using metal push point samplers consisting of an inner portion and an outer portion. The sampler was driven [about 6"] into the sediment at each sampling location. The inner portion of the sampler was then removed, with the outer portion remaining in the substrate. A mini well with a screen was inserted in the push point sampler. A plastic hose was connected to the top of the well and water was gently withdrawn using a syringe at a rate of about 100 mL per minute. The conductivity of the pore water was continuously monitored. The sample aliquots for chemical analyses and toxicity testing were obtained only after the conductivity reading stabilized.

The tests took place at the NERL in North Chelmsford, MA. All of the samples were tested undiluted using 14 to 21 day-old juveniles of the freshwater amphipod, *H. azteca*, and 11- to 12-day old (second-to-third instar larval stage) juveniles of the midge insect, *C. tentans*. All exposures lasted for 96 hours.

Ten replicates of each pore water sample and the laboratory control were prepared for each species to start the test. The test was static, non-renewal. The organisms were fed at 0 and 48 hours. The test endpoints consisted of survival after 96 hours of exposure.

Exhibit 6.6 summarizes the results and the outcome of the statistical analyses detailed in **Appendix 9**).

Exhibit 6.6: Survival in <i>H. azteca</i> and <i>C. tentans</i> exposed to sediment pore water for 96 hours							
reference	Ely Brook ^a			Schoolhouse Brook			EBOR ^b
SB1-ref	EB2	EB3	EB4	SB3	SB4	SB5	OMP3
H. azteca survival (%)							
85%	40% [*]	10%*	0%*	100%	85%	85%	90%
C. tentans survival (%)							
100%	100%	100%	50%	90%	100%	90%	100%

a only the results of the undiluted Ely Brook samples are presented in this table

The data can be summarized as follows:

- The H. azteca toxicity test met the TAC, with 100% control survival. All three pore water samples
 collected from Ely Brook were acutely toxic after 96 hours of exposure. Acute pore water toxicity
 was absent from the three Schoolhouse Brook and the EBOR sampling locations.
- The *C. tentans* toxicity test did not meet the TAC because control survival was only 70%, instead
 of the minimum-required 90%. However, survival was 100% at the reference location (SB1 ref).
 No statistically significant differences were found when short-term survival in Ely Brook and
 Schoolhouse Brook pore water was compared to the survival observed in the pore water
 reference sample.

In summary, *H. azteca* was by far the most sensitive of the two test species when exposed to sediment pore water for 96 hours. Therefore, only the results of this species were evaluated in the risk characterization. Also, the pore water collected at EB4 was acutely toxic to *H. azteca*, in contrast to the complete lack of toxicity observed after 28 days of exposure to the bulk sediment sample collected at the same location (see **Exhibit 6.5**). This pattern supported the interpretation that the bulk sediment chemistry in sample EB4 was altered by the high pH and relatively hard laboratory water used in the daily renewals.

6.3.3 Surface water toxicity testing

The surface water toxicity testing program consisted of a laboratory component and a field component.

6.3.3.1 Laboratory component

Surface water samples were collected on June 20, 2006 from three locations in Ely Brook and five locations in Schoolhouse Brook, as follows (see Figures 2.a and 2.b in **Appendix 10**):

^b EBOR = east branch of the Ompompanoosuc River

indicates that the response is significantly different from the reference

- One reference sample from Pond 4 (EMTT-1-ref) located on the east branch of Ely Brook (note: pond 4 was subsequently identified to be impacted by AMD)
- One sample from Pond 5 (EMTT-2) located on the east branch of Ely Brook downstream of Pond 4.
- One sample from the main stem of Ely Brook at the weir (EMTT-3).
- One reference sample from Schoolhouse Brook above the confluence with Ely Brook (EMTT-4ref).
- Four samples from Schoolhouse Brook between the confluence with Ely Brook and the EBOR (EMTT-5 to EMTT-8).

The seven-day toxicity tests took place at the NERL in North Chelmsford, MA. The surface water samples used in toxicity testing were concurrently analyzed for metals. All samples were tested undiluted for toxicity using neonates (< 24-hrs old) of the fathead minnow (*Pimephales promelas*). Four replicates of each of the surface water samples and the laboratory control were prepared to start the test. 250 mL of test water was added to each 300 mL beaker. The water was renewed daily. In addition, fresh renewal water was collected from the same field locations on June 23, 2006, except for EMTT-2 and EMTT-3 because all of the fish exposed to water from these two locations had died. The test endpoints consisted of survival and growth.

The water flea (*Ceriodaphnia dubia*) was exposed concurrently with the *P. promelas*. Ten replicates of each surface water sample (on-site and reference) and the laboratory control were prepared to start the test. Each replicate consisted of 15 mL of sample added to a 20-mL culture tube. One *C. dubia* neonate was added to each culture tube to start the test. The water was renewed daily. Fresh renewal water was collected from the same field locations on June 23, 2006, except for EMTT-2 and EMTT-3 because all of the *C. dubia* exposed to water from these two locations had died. The test endpoints consisted of survival and reproduction.

The results of the laboratory control were reviewed to evaluate test validity at the end of the seven-day test period. The *P. promelas* test met the quality control specifications. The *C. dubia* test, on the other hand, was invalidated because neither the laboratory control nor the reference samples met the minimum TAC for control survival and reproduction, as specified in the laboratory protocol. Only the fish data discussed below were used in the risk characterization.

Exhibit 6.7 summarizes the results and the outcome of the statistical analyses for the fathead minnow test detailed in **Appendix 10**.

Exhibit 6.7: Survival and growth in fathead minnows exposed to surface water for seven days							
Reference	Pond 4	Pond 5	Ely Brook	Schoolhouse Brook			
EMTT-4-ref	EMTT-1-ref	EMTT-2	EMTT-3	EMTT-5	EMTT-6	EMTT-7	EMTT-8
SURVIVAL (%)							
92.5%	20% ^a	0%*	0%*	2.5%*	17.5% [*]	15% [*]	47.5% [*]
AVERAGE DRY BIOMASS ^b (mg)							
0.39 mg	0.03 mg ^a	0 mg [*]	0 mg [*]	0 mg [*]	0.03 mg [*]	0.02 mg [*]	0.10 mg [*]

^a the statistical significance of this data point was not tested because Pond 4 was found to be an unacceptable reference location

The results indicated that of the two reference samples, only the one collected in Schoolhouse Brook upstream of the confluence with Ely Brook (EMTT-4-ref) was non-toxic to *P. promelas*. The reference sample collected from Pond 4 (EMTT-1-ref) was quite toxic, resulting in only 20% survival.

b average dry biomass = measured dry weight ÷ number of exposed organisms

indicates that the response is significantly different from the reference

These data showed that pond 4 did not reflect reference conditions. Likewise, the surface water sample collected from the main stem of Ely Brook at the weir (EMTT-3) was highly toxic, with no survival after less than three days of exposure. Toxicity was also severe in the four samples collected from Schoolhouse Brook below the confluence with Ely Brook. That response extended all the way to the confluence of Schoolhouse Brook with the EBOR (EMTT-8), covering a distance of over 2.0 miles. The average dry biomass reflected the poor survival data.

6.3.3.2 Field component

6.3.3.2.1 Wood frog egg hatching success and initial tadpole survival

In-situ toxicity testing using fertilized eggs of the wood frog (*Rana sylvatica*) was performed in May of 2007 in ponds 1, 4, and 5 located on the east branch of Ely Brook. Previous field observations indicated that all five ponds on the east branch were used extensively for breeding by amphibians during the spring season.

Wood frog egg masses were collected on May 2, 2007 from a nearby off-Site reference pond. The egg masses were divided into clutches of about 20 eggs and combined randomly into test groups of about 100 eggs. The eggs were then transported to the Site, slowly acclimated to the pond water for one hour, and placed in small, floating kitchen strainers located in specially built cages. Four cages (i.e., four replicates) were deployed in the three on-Site ponds and the off-Site reference pond, for a total of 16 cages (see **Appendix 11** for details).

The test recorded egg hatching success and initial tadpole survival after hatching. The experiment ended on May 10, 2007 after almost all of the eggs in the ponds had hatched. The hatching success and tadpole survival data were statistically analyzed to determine significant differences. **Exhibit 6.8** summarizes the results and the outcome of the statistical analyses detailed in **Appendix 11**.

Exhibit 6.8: Hatching success and initial survival in wood frog embryos exposed to pond surface water for eight days						
Off-Site reference Pond 1 (on-Site reference)		Pond 4	Pond 5			
HATCHING SUCCESS (%)						
89.7%	89.7% 87.5%		80.9%			
INITIAL TADPOLE SURVIVAL (%)						
87.8%	87.8% 87.5%		0.32%*			

indicates that the response is significantly different from the references

The data showed that the hatching success in the three on-Site ponds did not differ significantly from that observed in the off-Site reference pond. However, all but one tadpole died in pond 5 shortly after hatching, whereas tadpole survival in the other two on-Site ponds was unaffected.

The results suggest that the gelatinous eggs protected the developing wood frog embryos from the toxic surface water in pond 5. However, the free-swimming tadpoles died soon after hatching when they were exposed directly to ambient conditions. This pattern mirrored the one observed with the fathead minnow larvae exposed to water from pond 5 in the laboratory where all of the fish died within 24 hours of the start of the exposure.

The short-term exposure of the free-swimming tadpoles in pond 4 did not result in increased mortality. It is not known how long it took the eggs to hatch between their deployment on May 2, 2007 and the end of the experiment on May 10, 2007. However, it was unlikely that free-swimming tadpoles were present for more than a day or two before the experiment was ended on May 10, 2007. Hence, the tadpoles in pond 4 would not have been exposed long enough to the ambient conditions to result in a

toxic response. This interpretation was supported by the fact that the fathead minnow larvae exposed to water from pond 4 in the laboratory started dying only after 48 hours.

6.3.3.2.2 Long-term wood frog tadpole survival

A longer-term exposure using fresh tadpoles obtained from the off-Site reference pond was started after the hatching test was completed to track survival, growth, and development of the developing tadpoles for up to four weeks (see **Appendix 12**).

Four floating cages, each containing fifty, one-week old wood frog tadpoles, were deployed on May 16, 2007 in the off-Site reference pond, pond 1 (on-Site reference pond), pond 4, and pond 5. Each pond was visited twice a week. During those visits, the tadpoles were inspected for survival and growth, all cages were scrubbed and rinsed, a filtered surface water sample was collected for dissolved metals analysis, and the surviving tadpoles were fed pre-weighed amounts of fish flakes (Tetramin) and a boiled leaf of romaine lettuce.

The test ended after 24 days due to complete tadpole mortality at the off-Site reference pond and pond 1. It is speculated that the surface water quality was compromised due to excessive feeding and inadequate water circulation in the inner bag. The early trends in the data confirmed that the conditions in Pond 5 were highly toxic to wood frog tadpoles (0% survival after 8 days). The conditions in Pond 4 resulted in 62.5% mortality after 8 days versus 12.5% mortality in the off-site reference pond and 14% in pond 1 (see Table 1 and Figure 1 in **Appendix 12**). The data from pond 4 strongly suggested toxicity but were ultimately inconclusive because survival in the reference ponds also declined steadily to zero after 24 days.

The results from the wood frog egg hatching study were used quantitatively in the risk characterization. Only the data from day 8 (May 24, 2007) from the wood frog tadpole survival study were used qualitatively in the risk characterization due to severe limitations with the data.

Field observations showed that ponds 1, 4, and 5 were used extensively as breeding habitat by the local frog populations (particularly wood frogs and green frogs) and salamander populations (redspotted newts). Field personnel reported seeing many egg masses along the banks of these three ponds during repeated site visits to check the cages. Tadpoles hatching from natural egg clutches deposited along the shallow edges of pond 5 appeared to die quickly as indicated by the many dead tadpoles seen laying on the substrate next to the egg clutches. This field observation mirrored the mortality pattern seen in the tadpoles held in the cages deployed in pond 5. Dead tadpoles were not observed next to natural egg clutches in pond 4, suggesting that the hatched tadpoles were able to survive long enough to swim away from the egg masses.

6.4 FIELD COMMUNITY SURVEYS

6.4.1 Benthic community surveys

Various locations on Ely Brook (but excluding the ponds on the east branch), Schoolhouse Brook, and the EBOR were occasionally assessed for macroinvertebrate community health since 1987 by the State of Vermont, the USGS, and others (**Appendix 13**). The macroinvertebrate data were collected using standard field sampling protocols developed by the VTDEC. Both riffle and pool habitats were targeted. However, pools were not included in the VTDEC determination of Aquatic Life Uses (ALUs) because they are typically unproductive, do not represent the typical habitat found in these streams, and lack numerical guidelines for data interpretation.

The macroinvertebrate samples were processed and analyzed using standard VTDEC procedures to determine the macroinvertebrate biological condition. All organisms were identified to the lowest-practical taxon, except Oligochaeta (worms) which were identified to family. The counts were used to calculate community metrics which represent different aspect of the structure and function of the

Final Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

benthic community. These site-specific values were then compared to ranges of values observed in minimally disturbed streams of similar size and nature in Vermont.

Each macroinvertebrate sample was evaluated for the following eight metrics:

- Density is a general indicator of secondary productivity. It represents the number of organisms in a sample.
- Species richness is the total number of distinct taxa in a sample.
- EPT index is a subset of species richness. This metric represents the number of species in the less stress tolerant orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Tricoptera (caddies-flies).
- The *Percent Model Affinity of Orders (PMA-O)* is a measure of order-level similarity to a model based on reference streams. PMA-O is calculated by determining the % composition for each major group Coleoptera (beetles), Diptera (true flies), Ephemeroptera, Plecoptera, Trichoptera, Oligochaeta, and Other at the sampling location and comparing this value to the mean % composition values from the reference condition (i.e., the model).
- The *Biotic Index (BI)* measures the tolerance of the macroinvertebrate assemblage to organic (i.e., nutrient) enrichment. This metric is calculated by multiplying the number of organisms in a taxon by its assigned tolerance value. The BI value is the total of all these products divided by the total number of individuals of each taxon assigned a tolerance value.
- The *percent Oligochaete* (% *Oligo*) measures the % of the assemblage made up of the Order Oligochaeta. This metric is calculated by dividing the number of Oligochaeta by the total number of organisms in the sample.
- The EPT/EPT & Chironomidae (EPT/EPTC) represents the ratio of the less stress tolerant mayfly-stonefly-caddisfly orders to the generally more tolerant Chironomida (midges). This metric is calculated by dividing the number of organisms from the orders Ephemeroptera, Trichoptera, and Plecoptera by that total <u>plus</u> the animals of the order Chironomidae from the same sample.
- The Pinkham-Pearson Coefficient of Similarity Functional Groups (PPCS-Func.) measures the functional feeding group similarity to a model based on the reference streams. Even though similar in concept to the PMA-O, it measures functional feeding group changes instead of taxonomic changes. This metric is calculated by first determining the % composition of the six major functional groups (collector gatherer, collector filterer, predator, shredder-detritus, shredder-herbivore, scraper) in the sample. The quotient of minimum/maximum between the sample location and the reference model for the stream category is determined for each functional group. The PPCS-F is the sum of these quotients divided by six (i.e., the number of functional groups)

The results of the benthic community surveys conducted at the Site are summarized below by stream.

6.4.1.1 Main stem of Ely Brook

Four locations were investigated for benthic invertebrate community health in 1987 and 2006: one reference location in the upper reach of Ely Brook (River Mile [RM] 0.9) and three locations in the main stem of Ely Brook (RM 0.7; RM 0.4; and RM 0.1).

The upstream reference location was classified as *very good – good*. It supported the Vermont Class B ALUs macroinvertebrate biocriteria guidelines for Small High-Gradient (SHG) streams.

The three locations in the main stem of Ely Brook further downstream were all classified as *poor*, non-supporting of Vermont Class B ALUs macroinvertebrate biocriteria guidelines for SHG streams. Severe stress in the benthic invertebrate community was observed in the entire reach of the main stem of Ely Brook affected by AMD.

6.4.1.2 Schoolhouse Brook

Seven locations were investigated for benthic invertebrate community health in 1987, 1997, 2001, or 2006: two reference locations (RM 2.3 and RM 2.4) upstream of the confluence of Ely Brook with Schoolhouse Brook and five locations on Schoolhouse Brook below Ely Brook (RM 2.2 [just below the confluence with Ely Brook], RM 1.7, RM 1.0, RM 0.4, and RM 0.2 [just above the confluence with the EBOR]) .

The two upstream reference locations were classified as *excellent* to *good*, and supporting of Vermont Class B ALUs macroinvertebrate biocriteria guidelines for SHG streams.

The five locations further downstream were all classified as *poor*, non-supporting of Vermont Class B ALUs macroinvertebrate biocriteria guidelines for SHG streams. Severe stress in the benthic invertebrate community was observed in the entire reach of Schoolhouse Brook affected by AMD.

6.4.1.3 The EBOR

Four locations were investigated for benthic community health in 2005 or 2006: one reference location (RM 16.1) upstream of where Schoolhouse Brook joins the EBOR and three locations further downstream on the EBOR (RM 15.9 [just below the confluence with Schoolhouse Brook], RM 15.6, and RM 7.3.

The upstream reference location was classified as *excellent – very good*. The three locations below the confluence with Schoolhouse Brook were classified as *good* and *very good*. As a result, all four locations on the EBOR supported Vermont Class B ALUs macroinvertebrate biocriteria guidelines for Medium High-Gradient (MHG) streams. No stress associated with AMD was observed in the benthic invertebrate community.

6.4.2 Fish community surveys

Various locations on Schoolhouse Brook and the EBOR were assessed occasionally for fish community health since 1987 by the State of Vermont, the United States Geological Survey (USGS), and others (**Appendix 13**).

The fish data were obtained using standard field sampling protocols developed by the VTDEC. The field data were converted to Indices of Biotic Integrity (IBIs) which are comprised of multiple measures of fish assemblage structure, function, and condition. These values are combined to provide a single numeric index which represents the overall biological integrity of the fish assemblage at each sampling location.

The interpretation of this index varies depending on the size and type of stream. Most of Schoolhouse Brook, up to about 0.5 mile from its confluence with the EBOR, was evaluated under the Cold Water Index of Biotic Integrity (CWIBI). The lower end of Schoolhouse Brook and all of the EBOR was evaluated under the Mixed Water Index of Biotic Integrity (MWIBI).

The CWIBIs were derived from the following seven fish metrics collected at each sampling location:

Total number of fish per 100 m² (total #/100 m²).

- Number of native intolerant species.
- Proportion of fish classified as cold water fish (cold water spp %).
- Proportion of fish representing generalist feeders (general feeder %)
- Proportion of fish representing top carnivores (top carnivore %)
- Number of brook trout per 100 m²
- Brook trout age class structure

The MWIBIs were derived from the following nine fish metrics collected at each sampling location:

- Total number of native fish species (richness)
- Number and identity of native, intolerant fish species (No. intol. species)
- Number and identity of native benthic insectivorous species (No. benthic insect. species)
- Proportion of fish as white suckers and creek chubs (creek chub & white sucker %)
- Proportion of fish as generalist feeders (gen. feeder %)
- Proportion of fish as water column insectivores and benthic insectivores (insectivore %)
- Proportion of fish as top carnivores (top carnivore &)
- Proportion of fish with deformities, fin erosion, lesions, or tumors (anomalies %)
- Number of fish per 100 m² (total/100 m²)

Appendix 13 provides the results of the fish surveys performed on Schoolhouse Brook and the EBOR. The assessments are summarized below.

6.4.2.1 Schoolhouse Brook

Seven locations were investigated for fish community health in 1988, 1997, 2000, 2001, or 2006: two reference locations (RM 2.3 and 2.4) upstream of where Ely Brook joins Schoolhouse Brook and five locations on Schoolhouse Brook below Ely Brook (RM 2.2 [just below the confluence with Ely Brook], RM 1.7, RM 1.0, RM 0.4, and RM 0.2 [just above the confluence with the EBOR]) .

The fish community at the two upstream reference locations was classified as *excellent* to *good*, based on the CWIBI.

The five locations downstream of the confluence with Ely Brook were all classified as *poor*, based on the CWIBI (RM 2.2, RM 1.7, and RM 1.0) and the MWIBI (RM 0.4 and RM 0.2). Severe stress to the fish community was observed in the entire reach of Schoolhouse Brook affected by AMD.

6.4.2.2 The EBOR

Five locations were investigated for fish community health in 2001, 2002, 2006 or 2007: one reference location (RM 16.1) upstream of where Schoolhouse Brook joins the EBOR and four locations

Final Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

further downstream on the EBOR (RM 15.9 [just below the confluence with Schoolhouse Brook], RM 15.6, RM 13.8 and RM 10.1.

The upstream reference location was classified as good (2006) to very good (2001), based on the MWIBI.

Two of the four downstream locations were classified as *good* (RM 15.9 [2006] and RM 10.1 [2001]) based on the MWIBI, the third downstream location was classified as *poor* (RM 13.8 [2002]), and the last downstream locations (RM 15.6) was classified as both *good* (2007) and *poor* (2006). The results of the fish surveys on the EBOR, though not as conclusive as the benthic community surveys on the same general stretch of river, did not indicate a systematic impact from AMD. The reason is that the *poor* ratings were obtained at two locations further <u>downstream</u> of the location closest to the confluence of Schoolhouse Brook (i.e., RM 15.9), which itself showed a rating of *good*. One would expect the fish community at RM 15.9 to be at least as degraded as locations further downstream if AMD was responsible for the observed pattern. Also, the fact that the MWIBI score at RM 15.6 went from *poor* in 2006 to *good* in 2007 may suggest the potential for a sampling bias. It is concluded that stress associated with AMD was not likely observed in the fish community at the EBOR, although this conclusion was not as definitive as for the benthic invertebrate community in the same waterway.

6-16

Attachment 6.1: Median to Severe Effects Sediment Benchmarks					
Consensus-Based					
	Probable Effect	Effects Range -	Severe Effect Level		
Benchmark Type	Concentration (PEC)	Median (ER-M)	(SEL)		
	(MacDonald et al.,		(Persaud et al.,		
Reference	2000)	(Long et al., 1995)	1993)		
ORDER OF PREFERENCE	1	2	3		
Inorganics (mg/kg, DW)					
Aluminum					
Antimony					
Arsenic (III)	33	70	33		
Arsenic (V)		-			
Barium					
Beryllium	· ·				
Cadmium	4.98	9.6	10		
Chromium (total)	111	370	110		
Chromium (VI)					
Cobalt					
Copper	149	270	110		
Cyanide					
Iron			40,000		
Lead	128	218	. 250		
Manganese			1,100		
Mercury (inorganic)	1.06	0.71	2		
Mercury (organic)					
Molybdenum					
Nickel	48.6	51.6	75		
Selenium					
Silver		3.7			
Strontium					
Thallium					
Tin					
Vanadium					
Zinc	459	410	820		

Data sources for the freshwater sediment benchmarks:

the shaded values were used as effect sediment benchmarks

^{1.} MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.

^{2.} Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.

^{3.} Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attach	ment 6.2: Acute ben	chmarks for Surface	water
Benchmark Type	National Acute Water Quality Criteria	Maximum Allowable Conc. (MAC)	Secondary Acute Values (SAV)
		State of Vermont	Suter and Tsao
Reference	USEPA (2006)	(2006)	(1996)
Preference	1	2	3
Inorganics (ug/L)	<u> </u>		
Aluminum	750		
Antimony			180
Arsenic	340	360	
Barium	·		110
Beryllium			35
Cadmium	2	3.9	·
Chromium (III)	570	1,737	·
Chromium (VI)	16	16	
Cobalt			1,500
Copper	13	17.7	
Cyanide	22	22	
Iron			
Lead	65	81.6	
Manganese			2,300
Mercury (inorganic)	1.4	2.4	
Mercury (organic)			0.099
Molybdenum			16,000
Nickel	470	1,418	
Selenium		20	
Silver	3.2	4.1	
Strontium			15,000
Thallium			110
Tin			2,700
Vanadium			280
Zinc	120	117	

Data sources for the freshwater benchmarks are as follows:

the shaded values were used as the acute surface water benchmarks

^{1.} U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.

^{2.} State of Vermont. 2006. Vermont Water Quality Standards.

^{3.} Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

SECTION 7.0: RISK CHARACTERIZATION

7.1 INTRODUCTION

The potential for ecological risk is quantified during risk characterization. This phase, which represents the last stage of the BERA, is build around three sequential steps: 1) risk estimation; 2) uncertainty analysis; and 3) risk description.

The exposure analysis and effects analysis are integrated during risk estimation to determine the likelihood of adverse effects to the assessment endpoints, given the assumptions inherent in the analysis phase. The uncertainty analysis provides a context for the influences of those assumptions on the risk characterization process. Finally, the risk findings are summarized, interpreted, and discussed in the risk description section using various lines of evidence which address the risk estimates as well as the uncertainties associated with them.

The following three general approaches were used to support risk estimation in this BERA:

- The Hazard Quotient HQ method
- Statistical testing
- Published community health criteria

Exhibit 7.1 summarizes the risk estimation approach for each measurement endpoint.

Exhibit 7.1:		isk estimation approach by receptor oint for the aquatic portion of the El		
Receptor Group	Exposure Units	Exposure	Effect	Risk Estimation Approach
Benthic invertebrates	Ponds; MSEB; SHB; the EBOR	COPECs in bulk sediment	sediment benchmarks	HQ method
	MSEB; SHB; the	dissolved COPECs in sediment pore water	surface water benchmarks	HQ method
	EBOR	ΣSEM-AVS	SEM > AVS	Qualitative evaluation of the data
		H. azteca and C. tentans exposed for 96 hrs to sediment pore water in the laboratory	survival; growth	statistical testing
		H. azteca and C. tentans exposed for 28 d and 10 d, respectively, to bulk sediment in the laboratory	survival; growth	statistical testing
		benthic invertebrate community assessment in the field	community structure & function	statistical testing; VT benthic community health criteria

Exhibit 7.1:	Summary of r endp	isk estimation approach by receptor oint for the aquatic portion of the El	r group, exposure un y Copper Mine BERA	it, and measurement
Receptor Group	Exposure Units	Exposure	Effect	Risk Estimation Approach
Water column	Ponds	dissolved COPECs in surface water	surface water benchmarks	HQ method
invertebrates		C. dubia (water flea) exposed for 7 days to surface water in the laboratory	survival; reproduction	The data could not be used because the test did not meet TAC
Fish	MSEB; SHB; the	dissolved COPECs in surface water	surface water benchmarks	HQ method
	EBOR	P. promelas (fathead minnow) exposed for 7 days to surface water in the laboratory	survival; growth	statistical testing
	SHB and the EBOR	COPECs in whole fish collected from the field	CBRs	HQ method
		fish community assessment in the field	community structure & function	statistical testing; VT fish community health criteria
Amphibians	Ponds	dissolved COPECs in surface water	surface water benchmarks	HQ method
		P. promelas (surrogate for amphibian embryo-larvae) exposed for 7 days to surface water in the laboratory	survival and growth	statistical testing
		wood frog egg and tadpoles exposed to pond water in the field	hatching success and initial survival	qualitative evaluation of the data only
Insectivorous birds	SHB; EBOR	food chain modeling to calculate an EDD	bird TRVs	HQ method
Insectivorous mammals	SHB; EBOR	food chain modeling to calculate an EDD	mammal TRVs	HQ method
Piscivorous birds	SHB; EBOR	food chain modeling to calculate an EDD	bird TRVs	HQ method
Piscivorous mammals	SHB; EBOR	food chain modeling to calculate an EDD	mammal TRVs	HQ method

baseline ecological risk assessmentcritical body residue BERA

CBR

COPEC = contaminant of potential ecological concern EBOR = east branch of the Ompompanoosuc River

= estimated daily dose EDD MSEB = main stem of Ely Brook = hazard quotient HQ = Schoolhouse Brook SHB TRV = toxicity reference value VT = Vermont

7.1.1 Hazard quotient

7.1.1.1 Calculating HQs

The HQ method compares measured or estimated exposures (i.e., sediment EPCs, pore water EPCs, surface water EPCs, whole fish EPCs, and wildlife EDDs) to corresponding toxicity values (i.e., sediment or surface water benchmarks, fish CBRs, or wildlife TRVs). A COPEC-specific HQ is calculated using the following general equation:

HQ = exposure concentration) toxicity value (eq. 8.1)

7.1.1.2 Interpreting the potential for ecological risk using the HQ

The HQ approach used in this risk characterization determines potential ecological risk for two types of exposures (i.e., CTE and RME) using two sets of toxicity values (i.e., no effect and effect benchmarks, or the acute and chronic benchmarks for surface water and sediment pore water). Hence, this approach generated six possible risk outcomes, together with a confidence level, for each COPEC (see **Exhibit 7.2**).

	Exhibit 7.2: Interpretative risk matrix for HQs												
Risk Scenario	RME Case	CTE case	Risk Conclusion	Confidence Level									
1	N ≤ 1 and E ≤1	N ≤ 1 and E ≤ 1	Adverse effects are unlikely	high									
2	N > 1 and E ≤ 1	N ≤ 1 and E ≤ 1	Adverse effects are unlikely	moderate									
3	N > 1 and E > 1	N ≤ 1 and E ≤ 1	Adverse effects are unlikely	low									
4	N > 1 and E ≤ 1	N > 1 and E ≤ 1	Adverse effects are possible	low									
5	N > 1 and E > 1	N > 1 and E ≤ 1	Adverse effects are possible	moderate									
6	N > 1 and E > 1	N > 1 and E > 1	Adverse effects are possible	high									

N = an HQ based on dividing an exposure by its appropriate <u>no</u> effect benchmark (or its "acute" benchmarks for surface water exposures)

E = an HQ based on dividing an exposure by its appropriate effect benchmark (or its "chronic" benchmarks for surface water exposures)

Risk scenario 1 at one end of the spectrum predicts with high confidence that adverse effects are unlikely because neither the RME nor the CTE exceed their no effect benchmarks. Risk scenario 6 at the other end of the spectrum predicts with high confidence that adverse effects are possible because both the RME and the CTE exceed their effect benchmarks. The interpretative risk matrix is used to provide a richer context to help understand the potential for ecological risk based on HQs. This matrix could not be used with risk estimates based on statistical testing or field community surveys.

7.1.1.3 Calculating incremental risk for HQs

The potential for risk derived from past mining-related activities must be differentiated from risks associated with local reference conditions. This goal was achieved by calculating the Incremental Risk (IR) for each COPEC evaluated using the HQ method, as follows:

IR = site HQ - reference HQ (eq. 8.2)

Reference risk exceeded site risk if the IR for a particular COPEC fell below 1.0. Under those circumstances, any site risk for that COPEC was considered unrelated to Site activities. If the IR was above 1.0, then the site risk exceeded reference risk and the residual suggested the potential for Site-

related risk. IRs could not be calculated for measurement endpoints other than HQs (i.e., all of the toxicity tests and the two field community surveys).

An HQ risk analysis based on **Exhibit 7.2** would have been unwieldy if it discussed both the no effect and the effect RME case and CTE case for each combination of COPEC, receptor, and EU. Instead, the discussion focused on the effect RME and CTE case (or the chronic RME and CTE case for surface water and pore water) in order to identify the risks with the greatest impacts on future management decision making.

For the same reason, the final risk conclusion for each HQ-based measurement endpoint (see **Attachments 8.1 to 8.7** in Section 8) focused further on the CTE effect (or chronic) IR case, which is represented by risk scenario 6 in **Exhibit 7.2**. Note, however, that all of the risk tables in the BERA provide the HQs for both the no effect (or acute) and the effect (or chronic) RME case and CTE case for completeness and easy referral.

Finally, the discussions below implicitly assumed that the potential for ecological risk increased with higher HQs or IRs. No attempt was made to quantify the term "higher" because HQs and IRs do not measure relative risk, nor are they linearly scaled metrics of risk. Instead, the text simply reflected the general view that higher HQs or IRs were less desirable than lower values, if only because the former may have an (unmeasurable) increased likelihood of resulting in an ecological risk.

7.1.2 Statistical testing

Statistics were used to analyze the results of all the toxicity tests (sediment, pore water, surface water both in the laboratory and in the field). A potential for ecological risk was assumed to be present if the responses observed in the Site samples were statistically different from those measured at the reference location(s). IRs could not be calculated for the measurement endpoints based on statistical testing.

7.1.3 Community health criteria

The benthic invertebrate and fish community data collected from the waterways at and downstream from the Site were compared to upstream reference locations and to community health criteria developed by the State of Vermont for these types of habitats. Ecological risk was assumed to be present if the index of biotic integrity measured at a Site location fell below the published thresholds indicative of non-impaired communities. IRs could not be calculated for the measurement endpoints based on community surveys.

7.2 ASSESSMENT ENDPOINT 1: BENTHIC INVERTEBRATES

A stable and healthy benthic invertebrate community: Are the COPEC levels in sediment sufficiently high to cause biologically-significant changes or impair the function of the benthic invertebrate community in the on-site ponds and the three streams affected by the Site?

The potential for ecological risk to the benthic invertebrate community in the ponds, main stem of Ely Brook, Schoolhouse Brook, and the EBOR were assessed using five measurement endpoints.

7.2.1 Measurement endpoint 1.A:

Compare the COPEC levels in bulk sediment samples to no effect and effect sediment benchmarks

On-Site ponds

Pond 2:

Site RME and CTE effect HQs were exceeded only by Cr (Attachment 7.1).

No reference RME and CTE effect HQs exceeded 1.0 (Attachment 7.2).

None of the RME and CTE effect IRs exceeded 1.0 either (Attachment 7.3).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community was unlikely in pond 2.

Pond 3:

Site RME and CTE effect HQs were exceeded only by Mn (Attachment 7.4).

No reference RME and CTE effect HQs exceeded 1.0 (Attachment 7.2).

The RME and CTE effect IRs for Mn equaled 2.4 and 2.5, respectively (Attachment 7.5).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community was possible in pond 3. However, the exceedances of Mn in bulk sediment were small and unlikely to cause severe impairment.

Pond 4:

Site RME and CTE effect HQs were exceeded by Cu, Mn, and Ni (Attachment 7.6).

No reference RME and CTE effect HQs exceeded 1.0 (Attachment 7.2).

The RME and CTE effect IRs exceeded 1.0 for Cu (RME IR = 2.1 and CTE IR = 2.2) and Mn (RME IR = 1.7 and CTE IR = 1.2) (Attachment 7.7).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community was possible in pond 4. However, the exceedances by both Cu and Mn in bulk sediment were small and unlikely to cause severe impairment by themselves.

Pond 5:

Site RME and CTE effect HQs were exceeded by Cu, Mn, Ni, and Zn (Attachment 7.8).

No reference RME and CTE effect HQs exceeded 1.0 (Attachment 7.2).

The RME and CTE effect IRs exceeded 1.0 only for Cu (RME IR = 23 and CTE IR = 23) (Attachment 7.9).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community was possible in pond 5. The presence of high concentrations of Cu in bulk sediment was likely to cause severe impairment.

Main stem of Ely Brook

Site RME and CTE effect HQs were exceeded by Cu, Fe, Mn, and Ag (Attachment 7.10).

Reference RME and CTE effect HQs were exceeded by Cu and Mn (Attachment 7.11).

The RME and CTE effect IRs exceeded 1.0 for Cu (RME IR = 21 and CTE IR = 19) and Fe (RME IR = 3.0 and CTE IR = 2.7) (Attachment 7.12).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community was possible in the main stem of Ely Brook. The presence of high concentrations of Cu in bulk sediment was likely to cause severe impairment.

Schoolhouse Brook

Site RME and CTE effect HQs were exceeded only by Cu (Attachment 7.13).

None of the reference RME and CTE effect HQs exceeded 1.0 (Attachment 7.14).

The RME and CTE effect IRs exceeded 1.0 only for Cu (RME IR = 3.2 and CTE IR = 1.9) (Attachment 7.15).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community was possible in the main stem of Ely Brook. However, the exceedances for Cu in bulk sediment were small and unlikely to cause severe impairment by themselves.

The EBOR

None of the Site or reference RME and CTE effect HQs exceeded 1.0 (Attachments 7.16 and 7.17). Hence, none of the effect RME and CTE IRs exceeded 1.0 either (Attachment 7.18).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community exposed to bulk sediment was unlikely in the EBOR.

Risk conclusion for measurement endpoint 1.A

Measurement endpoint 1.A identified Cu as a likely stressor to the benthic invertebrate communities exposed to sediment in pond 5 and the main stem of Ely Brook. One or two small exceedances of RME and CTE effect IRs were also present in ponds 3 and 4, and in Schoolhouse Brook, but were unlikely to cause severe impairment by themselves. No risk to the benthic invertebrate communities was identified in pond 2 and the EBOR based on sediment benchmark exceedances. The WOE for this measurement endpoint was "low".

7.2.2 Measurement endpoint 1.B:

Compare the dissolved COPEC levels in sediment pore water samples to surface water benchmarks

On-Site ponds

Sediment pore water samples were not collected from any of the ponds on the east branch of Ely Brook for chemical analyses.

Main stem of Ely Brook

Site RME and CTE chronic HQs were exceeded by Al, Be, Cd, Co, Cu, Mn, Hg, and Zn (Attachment 7.19).

Reference RME and CTE chronic HQs were exceeded by Al, Be, Cd, Mn, and Hg (**Attachment 7.20**).

The RME and CTE chronic IRs were exceeded by AI (RME IR = 4.2 and CTE IR < 1.0), Cd (RME IR = 4.9 and CTE IR < 1.0), Co (RME IR = 3.9 and CTE IR = 1.3), Cu (RME IR = 1.4 and CTE IR = 1.4), and Mn (RME IR = 1.4) and CTE IR = 1.40 (Attachment 7.21).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community in the main stem of Ely Brook was possible from exposure to sediment pore water. The presence of relatively high concentrations of Cu and Mn was likely to cause impairment.

Schoolhouse Brook

Site RME and CTE chronic HQs were exceeded by Al, Be, Cd, Cu, Mn, Se,Tl, and Zn (Attachment 7.22).

Reference RME and CTE chronic HQs were exceeded by Al, Be, Cd, and Mn (Attachment 7.23).

The RME and CTE chronic IRs were exceeded by AI (RME IR = 1.2 and CTE IR < 1.0), Cd (RME IR = 1.1 and CTE IR < 1.0), Cu (RME IR = 2.7 and CTE IR < 1.0), Se (RME IR = 1.4 and CTE IR < 1.0), TI (RME IR = 12 and CTE IR = 6.7), and Zn (RME IR = 1.2 and CTE IR < 1.0) (Attachment 7.24).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community in Schoolhouse Brook was possible from exposure to sediment pore water. The presence of relatively high concentrations of TI was likely to cause impairment.

• The EBOR

Site RME and CTE chronic HQs were exceeded by Be, Mn, and Hq (Attachment 7.25).

Reference RME and CTE chronic HQs were exceeded by the same three COPECs (Attachment 7.26).

The RME and CTE chronic IRs were not exceeded by any of the COPECs (Attachment 7.27).

It was concluded, with a high level of confidence, that risk to the benthic invertebrate community in the EBOR was unlikely in response to exposure to sediment pore water.

Risk conclusion for measurement endpoint 1.B

Measurement endpoint 1.B identified Cu and Mn in sediment pore water as likely stressors to the benthic invertebrate community in the main stem of Ely Brook. TI in sediment pore water was identified as a likely stressor to the benthic invertebrate community in Schoolhouse Brook. Several additional small exceedances of RME effect IRs were also observed in both streams, but were unlikely to cause severe impairment by themselves. No risk to the benthic invertebrate community was identified in the EBOR based on benchmark exceedances. The WOE for this measurement endpoint was "low".

7.2.3 Measurement endpoint 1.C

Estimate the bioavailability of divalent metals in sediment based on SEM/AVS

SEM and AVS measurements were obtained from the main stem of Ely Brook, Schoolhouse Brook, and the EBOR between 2000 and 2006 (note: samples for SEM and AVS analyses were not collected from any of the reference locations). Toxicity to benthic invertebrates from exposure to divalent metals is not expected when AVS exceeds SEM (i.e., SEM/AVS < 1.0, meaning that all of the available SEM in the sediment is bound up by the AVS). Toxicity to benthic invertebrates is possible when SEM exceeds AVS (i.e., SEM/AVS \geq 1.0, meaning that not enough AVS is present to bind all of the available SEM in the sediment) (EPA, 2006). TOC is another binding phase which should be considered when quantifying metals bioavailability in sediment (EPA, 2006). Only one of the SEM and AVS samples collected from the waterways was analyzed for TOC. Hence, TOC was not considered further.

Attachment 7.28 summarizes the SEM and AVS data. Two general observations follow:

- Little or no AVS was present in any of the sediment samples. This pattern was not surprising given the coarse nature of the sediment, and the high energy, high oxygen, and low organic carbon environment found in the waterways. Such physical and chemical conditions do not favor the anoxia needed to generate large amounts of AVS.
- Cu predominated as the major SEM metal in sediment from the main stem of Ely Brook and in Schoolhouse Brook. Zn became a second major SEM metal in sediment from the EBOR due to the lower concentrations of Cu.

The ponds

Sediment samples were not collected from the ponds on the east branch of Ely Brook for SEM and AVS analyses.

Main stem of Ely Brook

Nine sediment samples were collected from the main stem of Ely Brook for SEM and AVS analyses. All nine samples showed SEM/AVS ratios > 1.0, indicating the presence of bioavailable divalent metals (**Attachment 7.28**).

Schoolhouse Brook

Ten sediment samples were collected from Schoolhouse brook for SEM and AVS analyses. All ten samples showed SEM/AVS ratios > 1.0, indicating the presence of bioavailable divalent metals (**Attachment 7.28**).

The EBOR

Five sediment samples were collected from the EBOR for SEM and AVS analyses. All five samples showed SEM/AVS ratios > 1.0, indicating the presence of bioavailable divalent metals (**Attachment 7.28**). In general, however, the SEM/AVS ratios were greatly reduced in the EBOR as compared to the two upstream waterways.

Risk conclusion for measurement endpoint 1.C

Measurement endpoint 1.C indicated that Cu (and to a lesser degree Zn) was bioavailable in most of the sediment samples collected from the main stem of Ely Brook, Schoolhouse Brook, and the EBOR. The SEM/AVS ratios were high in the main stem of Ely Brook and Schoolhouse Brook, but noticeably lower in the EBOR. The potential for impact to the benthic invertebrate community was

present in all three waterways due to the bioavailability of divalent metals in the substrate. The WOE for this measurement endpoint was "low".

7.2.4 Measurement endpoint 1.D

Measure survival in H. azteca and C. tentans exposed for 96 hours in the laboratory to sediment pore water samples.

The ponds

Sediment pore water samples were not collected from the ponds on the east branch of Ely Brook for toxicity testing.

Main stem of Ely Brook

The three pore water samples collected in August 2006 from substrate in the main stem of Ely Brook were acutely toxic to the amphipod *H. azteca*, but not to the chironomid fly larvae *C. tentans*. The risk evaluation focused on the amphipod since it was the most sensitive of the two test species. The presence of acute toxicity in all three pore water samples showed that conditions in the substrate of the main stem of Ely Brook were unsuitable for sensitive benthic invertebrates under short-term (96 hr) exposures at the time of pore water sampling.

Schoolhouse Brook

The three pore water samples collected from Schoolhouse brook below the confluence with Ely Brook in August 2006 were not acutely toxic to either *H. azteca* or *C. tentans*. This evidence showed that conditions in the substrate were suitable for sensitive benthic invertebrates under short-term (96 hr) exposures at the time of pore water sampling.

The EBOR

The one pore water sample collected from the EBOR below the confluence with Schoolhouse brook in August 2006 was not acutely toxic to either *H. azteca* or *C. tentans*. This evidence showed that conditions in the substrate were suitable for intolerant benthic invertebrates under short-term (96 hr) exposures at the time of pore water sampling.

Risk conclusion for measurement endpoint 1.D

Measurement endpoint 1.D indicated the presence of significant ecological risk to the benthic invertebrate community from exposure to sediment pore water collected from the main stem of Ely Brook, but not from Schoolhouse Brook or the EBOR. The WOE for this measurement endpoint was "medium".

7.2.5 Measurement endpoint 1.E

Measure survival and growth in the benthic invertebrate species H. azteca and C. tentans exposed in the laboratory for 28 days and 10 days, respectively, to bulk sediment samples

The ponds

Bulk sediment samples were not collected from the ponds on the east branch of Ely Brook for sediment toxicity testing

Ely Brook

Both test species showed toxicity when exposed to two of the three sediment samples collected from the main stem of Ely Brook. The non-toxic sample had the highest Cu concentrations in the bulk sediment and the pore water phase. It appears that the high pH and relatively hard renewal water used in the toxicity test may have precipitated out the Cu, thereby making it non bioavailable.

Schoolhouse Brook

Both test species showed toxicity when exposed to the three sediment samples (plus the duplicate) collected from AMD-impacted reach of Schoolhouse Brook.

The EBOR

Neither test species showed toxicity when exposed to the sediment sample collected less than 0.5 miles downstream of the confluence of Schoolhouse Brook with the EBOR.

Risk conclusion for measurement endpoint 1.E

Measurement endpoint 1.E indicated the presence of significant ecological risk to the benthic invertebrate community from exposure to bulk sediment collected from the main stem of Ely Brook and the AMD-impacted reach of Schoolhouse Brook, but not from the EBOR. The WOE for this measurement endpoint was "medium-high".

7.2.6 Measurement endpoint 1.F

Evaluate the structure and function of the benthic invertebrate community in the field

• The ponds

The structure and function of the benthic invertebrate community was not quantitatively evaluated in the ponds on the east branch of Ely Brook

Ely Brook

Surveys in the main stem of Ely Brook showed that the benthic invertebrate community was severely impaired in the entire section of the stream affected by AMD. Conditions did not improve appreciably between 1987 and 2006. The upstream reference location in Ely Brook supported a healthy benthic community.

Schoolhouse Brook

Surveys in Schoolhouse Brook showed that the benthic invertebrate community was severely impaired in the entire section between the confluence of Ely Brook and the EBOR. Conditions did not improve appreciably between 1987 and 2006. The upstream reference locations in Schoolhouse Brook supported a healthy benthic community.

The EBOR

Surveys in the EBOR showed that the benthic invertebrate community was not impaired in the section below the confluence with Schoolhouse Brook. Conditions stayed stable between 2005 and 2006. The upstream reference locations in Schoolhouse Brook also supported a healthy benthic community.

Risk conclusion for measurement endpoint 1.F

The evidence indicated that significant ecological risk to the benthic invertebrate community was present in the main stem of Ely Brook and in Schoolhouse Brook, but not in the EBOR. The WOE for this measurement endpoint is "high". The level of confidence in this conclusion was also high because it was based on sampling the benthic community in the field over time under standard conditions plus analyzing and interpreting the results using recognized protocols.

7.2.7 WOE integration for assessment endpoint 1

Attachment 7.29 summarizes the WOE integration for the six measurement endpoints evaluated under assessment endpoint 1. The preponderance of the evidence strongly indicated that the benthic community in ponds 4 and 5, the main steam of Ely Brook and the entire reach of Schoolhouse Brook between the confluence of Ely Brook down to the EBOR was severely affected by AMD from the Site. The evidence also showed that the benthic community in the EBOR below the confluence with Schoolhouse Brook was healthy.

7.3 ASSESSMENT ENDPOINT 2: WATER COLUMN INVERTEBRATES

A stable and healthy water column invertebrate community: Are the levels of COPECs in surface water sufficiently high to cause biologically-significant changes or impair the function of the water column invertebrate community in the ponds at the Site?

The potential for ecological risk to the water column invertebrate community associated with the four on-Site ponds was assessed using two measurement endpoints.

7.3.1 Measurement endpoint 2.A

Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.

The ponds

Pond 2:

Site RME and CTE chronic HQs were exceeded by Be, Cu, Mn, Ag, and Zn (Attachment 7.30).

Reference RME and CTE chronic HQs were exceeded by Be, Cd, Cr, Cu, Pb, Se, Ag, and Zn (Attachment 7.31).

The RME and CTE chronic IRs exceeded 1.0 or Cu (RME IR = 4.1 and CTE IR < 1.0) and Mn (RME IR = 12 and CTE IR = 4.4) (Attachment 7.32).

It was concluded, with a high level of confidence that risk to the water column invertebrate community was possible in pond 2. However, the CTE chronic IR exceedance for dissolved Mn was small and would be unlikely to cause severe impairment.

Pond 3:

Site RME and CTE chronic HQs were exceeded by Be, Cd, Cr, Mn, and Ag (Attachment 7.33).

Reference RME and CTE chronic HQs were exceeded by Be, Cd, Cr, Cu, Pb, Se, Ag, and Zn (Attachment 7.31).

The RME and CTE chronic IRs exceeded 1.0 only for Cr (RME IR = 1.3 and CTE IR < 1.0) and Mn (RME IR = 3.6 and CTE IR = 3.6) (Attachment 7.34).

It was concluded, with a high level of confidence, that risk to the water column invertebrate community was possible in pond 3. However, the CTE chronic IR exceedance for dissolved Mn was small and would be unlikely to cause severe impairment.

Pond 4:

Site RME and CTE chronic HQs were exceeded by Be, Cu, Mn, Se, Ag, and Zn (**Attachment 7.35**).

Reference RME and CTE chronic HQs were exceeded by Be, Cd, Cr, Cu, Pb, Se, Ag, and Zn (Attachment 7.31).

The RME and CTE chronic IRs exceeded 1.0 for Cu (RME IR = 6.6 and CTE IR < 1.0) and Mn (RME IR = 1.7 and CTE IR < 1.0) (Attachment 7.36).

It was concluded, with a moderate level of confidence, that risk to the water column invertebrate community was possible in pond 4. However, neither dissolved Cu nor dissolved Mn exceeded their CTE chronic IRs, suggesting that these two COPECs were unlikely to cause severe impairment.

Pond 5:

Site RME and CTE chronic HQs were exceeded by Be, Cd, Cr, Cu, Pb, Mn, Se, Ag, and Zn (Attachment 7.37).

Reference RME and CTE chronic HQs were exceeded by Be, Cd, Cr, Cu, Pb, Se, Ag, and Zn (Attachment 7.31).

The RME and CTE chronic IRs exceeded 1.0 for Cr (RME IR = 3.2 and CTE IR < 1.0), Cu (RME IR = 74 and CTE IR = 45), Pb (RME IR = 29 and CTE IR < 1.0), Mn (RME IR = 3.5 and CTE IR = 1.5), and Zn (RME IR = 1.5 and CTE IR = 1.9) (Attachment 7.38).

It was concluded, with a high level of confidence that risk to the water column invertebrate community was possible in pond 5. The high levels of dissolved Cu were likely to cause severe impairment.

Risk conclusion for measurement endpoint 2.A

Measurement endpoint 2.A identified dissolved Cu as a likely stressor to the water column invertebrate community in pond 5. One or two small exceedances of RME and IR CTE chronic IRs were also present in ponds 2, 3 and 4, but appeared unlikely to cause severe impairment by themselves. The WOE for this measurement endpoint was "low".

7.3.2 Measurement endpoint 2.B

Measure survival and reproduction in the water flea, C. dubia, exposed for seven days in the laboratory to surface water samples.

The ponds

The *C. dubia* test performed on surface water samples collected from ponds 4 and 5 failed to meet the minimum test acceptability criteria. No toxicity data were available for evaluation in the BERA.

7.3.3 WOE integration for assessment endpoint 2

Attachment 7.39 summarizes the WOE integration for the one measurement endpoint evaluated under assessment endpoint 2. The available evidence strongly indicated that the surface water in pond 5 was severely impaired by dissolved Cu. The surface waters in ponds 2 and 3 also showed the potential for impairment but at a much less severe level. The surface water in pond 4 was unlikely to have severe effects on the water column invertebrate community.

7.4 ASSESSMENT ENDPOINT 3: FISH

A stable and healthy fish community: Are the levels of COPECs in surface water sufficiently high to cause biologically-significant changes or impair the function of the fish community at the on-Site ponds and in the three streams affected by the Site?

Four measurement endpoints were used to assess the potential impacts of COPECs to this receptor group:

7.4.1 Measurement endpoint 3.A

Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.

The ponds

The potential for ecological risk to fish in the four ponds on the east branch of Ely Brook was not assessed because no fish were observed in these ponds, including pond 1 (the on-Site reference pond).

Main stem of Ely Brook

The potential for ecological risk to fish was assessed, even though the main stem of Ely Brook is unable to support fish under current conditions.

Site RME and CTE chronic HQs were exceeded by Al, Cd, Co, Cu, Fe, Mn, Ag, and Zn (Attachment 7.40).

Reference RME and CTE chronic HQs were exceeded by Cd, Cu, Mn, and Ag (Attachment 7.41).

The RME and CTE chronic IRs exceeded 1.0 for AI (RME IR = 213 and CTE IR = 68), Co (RME IR = 14 and CTE IR = 4.0), Cu (RME IR = 611 and CTE IR = 281), Fe (RME IR = 40 and CTE IR = 10), Mn (RME IR = 7.5 and CTE IR = 4.5), Ag (RME IR = 1.4 and CTE IR <1.0), and Zn (RME IR = 4.3 and CTE IR = 3.7) (Attachment 7.42).

It was concluded, with a high level of confidence, that risk to the fish community was possible in the main stem of Ely Brook. The high levels of dissolved Al, Cu, and Fe in particular were likely to cause severe impairment to the local fish community.

Schoolhouse Brook

Site RME and CTE chronic HQs were exceeded by Al, Cd, and Cu (Attachment 7.43).

Reference RME and CTE chronic HQs were exceeded by Cd (Attachment 7.44).

The RME and CTE chronic IRs exceeded 1.0 only for Cu (RME IR = 12 and CTE IR = 7.8) (Attachment 7.45).

It was concluded, with a high level of confidence, that risk to the fish community was possible in Schoolhouse Brook. The high levels of dissolved Cu were likely to cause severe impairment to the local fish community.

The EBOR

Site RME and CTE chronic HQs were exceeded by Ba, Cu, Pb, Ag, and Zn (Attachment 7.46).

Reference RME and CTE chronic HQs were exceeded by Pb and Ag (Attachment 7.47).

The RME and CTE chronic IRs exceeded 1.0 for Cu (RME IR = 3.1 and CTE IR = 1.1), Pb (RME IR = 1.4 and CTE IR < 1.0), Ag (RME IR = 1.1 and CTE IR = 8.0), and Zn (RME IR = 39 and CTE IR= 6.5) (Attachment 7.48).

It was concluded, with a high level of confidence, that risk to the fish community was possible in the EBOR. The high levels of dissolved Ag and Zn were likely to cause severe impairment to the local fish community.

Risk conclusion for measurement endpoint 3.A

Measurement endpoint 3.A identified dissolved Cu as the most likely stressor to fish in the main stem of Ely Brook and Schoolhouse Brook. Dissolved Ag and dissolved Zn were risk drivers in the EBOR. All three EUs appeared likely to be impaired based on an evaluation of surface water chemistry. The WOE for this measurement endpoint was "low".

7.4.2 Measurement endpoint 3.B

Survival and growth in juvenile fathead minnows (P. promelas).

The ponds

The potential for risk to fish was not assessed because these receptors are absent from the ponds (note: fathead minnow neonates were exposed to surface water samples collected from ponds 4 and 5. However, the organisms were used as surrogates for the embryo-larval life stages of amphibians. The results of these exposures are evaluated in Section 7.5).

Ely Brook

Fathead minnow neonates were exposed in the laboratory to surface water collected from one location on the main stem of Ely Brook. None of the fish survived the seven-day exposure, indicating that surface water from the main stem of Ely Brook was highly toxic to juvenile fish.

Schoolhouse Brook

Fathead minnow neonates were exposed in the laboratory to surface water collected from four locations on Schoolhouse Brook. These locations were just downstream of the confluence of Ely Brook with Schoolhouse Brook, adjacent to the lower end of the slag piles, about midway between Ely Brook and the EBOR, and just upstream of the confluence between Schoolhouse Brook and the EBOR. Fish survival after seven days of exposure was significantly reduced at all

four locations, indicating that surface water along the entire reach of Schoolhouse Brook between Ely Brook and the EBOR (about 2.2 miles) was toxic to juvenile fish.

The EBOR

No Surface water samples were collected from the EBOR for toxicity testing using fathead minnows.

Risk conclusion for measurement endpoint 3.B

Measurement endpoint 3.B identified severe ecological risk to fish in the main stem of Ely Brook and in Schoolhouse Brook based on surface water toxicity testing in the laboratory. The surface water flowing through these two affected habitats cannot support a healthy fish community under current conditions. No conclusions can be made for the EBOR since the toxicity of its surface water to fish was not tested. The WOE for this measurement endpoint was "medium"

7.4.3 Measurement endpoint 3.C

Compare COPEC levels measured in whole fish to no effect and effect CBRs

The ponds

The potential for risk to fish was not evaluated using this measurement endpoint because the ponds do not support fish.

Main stem of Ely Brook

The potential for risk to fish was not evaluated using this measurement endpoint because the main stem of Ely Brook does not support fish.

Schoolhouse Brook

- Brook trout

Site RME and CTE effect HQs were exceeded only by Cu (Attachment 7.49).

None of the reference RME and CTE effect HQs were exceeded in the non-impacted section (Attachment 7.50).

The RME and CTE effect IRs were exceeded only by Cu (RME IR = 2.6 and CTE IR = 2.5) (Attachment 7.51).

- Blacknose dace

Site RME and CTE effect HQs were exceeded only by Cu (Attachment 7.52).

The reference RME and CTE effect HQs were exceeded only by AI in the non-impacted section (Attachment 7.53).

The RME and CTE effect IRs were exceeded only by Cu (RME IR = 2.0 and CTE IR = 1.3) (Attachment 7.54).

The EBOR

- Brook trout

None of the site RME and CTE effect HQs were exceeded in the EBOR (Attachment 7.55) and all of the RME and CTE effect IRs fell below 1.0 (Attachment 7.56) (note: no brook trout were collected from the upstream reference location on the EBOR).

- Blacknose dace

Site RME and CTE effect HQs were exceeded only by Al and Cu (Attachment 7.57).

None of the reference RME and CTE effect HQs or the RME and CTE effect IRs exceeded 1.0 (Attachments 7.58 and 7.59).

Risk conclusion for measurement endpoint 3.C

Measurement endpoint 3.C identified the potential for ecological risk to fish in Schoolhouse Brook, but not in the EBOR, based on comparing tissue residue levels to conservative fish CBRs. The Cu levels were relatively low in the fish collected from Schoolhouse Brook. It is possible, however, that fish with substantially higher tissue burdens of Cu died out and were eliminated from the population. The WOE for this endpoint was "medium".

7.4.4 Measurement endpoint 3.D

Evaluate the structure and function of the fish community

The ponds

The potential for risk to fish was not evaluated using this measurement endpoint because none of the ponds (including the reference pond) supported fish.

Main stem of Ely Brook

The potential for risk to fish could not be evaluated using this measurement endpoint because fish were absent from the main stem of Ely Brook. The lack of fish was seen as indicative of exposure to AMD.

Schoolhouse Brook

Field surveys in Schoolhouse Brook showed that the fish community was severely impaired in the entire section of Schoolhouse brook between the confluence of Ely Brook and the EBOR. The reference sites located immediately upstream of the confluence of Ely Brook supported a healthy fish community, indicating that the observed impairment further downstream was a direct result of exposure to AMD.

The EBOR

Field surveys in the EBOR showed that the fish community was not likely affected by AMD. The sampling station on the EBOR immediately below the confluence with Schoolhouse Brook supported a healthy fish community, even though the community was rated as "poor" at two of the three locations further downstream. The fish community at one of those two locations went from "poor" to "good" between 2006 and 2007. This unexpected improvement seems to have resulted from an unknown sampling bias. Overall, the data did not suggest that the fish community in the

EBOR was systematically impaired by AMD, even though the evidence was not as conclusive as it could have been.

Risk conclusion for measurement endpoint 3.D

Measurement endpoint 3.D indicated severe ecological risk to fish in the main stem of Ely Brook (devoid of fish) and Schoolhouse brook (severe impairment) based on fish community surveys. The preponderance of the evidence collected from the EBOR indicated that the fish community was unlikely to be affected by AMD. The WOE for this measurement endpoint was "high".

7.4.5 WOE integration for assessment endpoint 3

Attachment 7.60 summarizes the WOE integration for the four measurement endpoints evaluated under assessment endpoint 3. The preponderance of the evidence strongly indicated that the fish community in two of the three streams was severely affected by AMD. The main stem of Ely Brook was impaired as indicated by a lack of fish and CTE chronic IRs for Cu well above 100. The entire reach of Schoolhouse Brook between the confluence of Ely Brook down to the EBOR was also impaired as indicated by high CTE chronic IRs for several surface water COPECs and a severely depleted fish community. The fish community in the EBOR appears to be unaffected by AMD.

7.5 ASSESSMENT ENDPOINT 4: AMPHIBIANS

Stable and healthy amphibian populations: Are the levels of COPECs in surface water sufficiently high to cause biologically-significant changes or impair the function of the amphibian populations in the on-site ponds?

The potential for ecological risk to the amphibian populations associated with the on-Site ponds was assessed using three measurement endpoints.

7.5.1 Measurement endpoint 4.A

Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks

Note: the evaluation of risk to amphibians under Measurement Endpoint 4.A is identical to the risk evaluation performed for the water column invertebrate community in the ponds under measurement endpoint 2.A (see Section 7.3.1).

Pond 2:

It was concluded, with a high level of confidence that risk to the juvenile stages of amphibians was possible in pond 2. However, the exceedance for dissolved Mn (CTE chronic IR = 4.3) was relatively small and would be unlikely to cause severe impairment to the local amphibian populations.

Pond 3:

It was concluded, with a high level of confidence that risk to the juvenile stages of amphibians was possible in pond 3. However, the exceedance for dissolved Mn (CTE chronic IR = 3.6) was relatively small and would be unlikely to cause severe impairment to the local amphibian populations.

Pond 4:

It was concluded, with a moderate level of confidence that risk to the juvenile stages of amphibians was possible in pond 4. However, neither dissolved Cu nor dissolved Mn had a CTE chronic IR above 1.0, suggesting that those two COPECs were unlikely to cause severe impairment to the local amphibian populations.

Pond 5:

It was concluded, with a high level of confidence that risk to the juvenile stages of amphibians was possible in pond 5. The high levels of dissolved Cu (CTE chronic IR = 45) were likely to cause severe impairment to the local amphibian populations.

Risk conclusion for measurement endpoint 4.A

Measurement endpoint 4.A identified dissolved Cu as a likely stressor to the early life stages of amphibians in pond 5. One or two small exceedances of RME and CTE chronic IRs were also present in ponds 2, 3 and 4, but appeared unlikely to cause severe impairment by themselves. The WOE for this measurement endpoint was "low".

7.5.2 Measurement endpoint 4.B

Survival and growth in juvenile fathead minnows (P. promelas).

The ponds

Fathead minnow neonates (used as surrogates for amphibian embryo-larval stages) were exposed in the laboratory to surface water samples collected from one location in pond 4 and one location in pond 5. Only 20% of the neonates survived in the sample from pond 4, and none survived in the sample from pond 5 after seven days of exposure. These data indicated that the surface water from the two ponds was highly toxic to the embryo-larval stages of amphibians.

Risk conclusion for measurement endpoint 4.B

Severe ecological risk to the early life stages of amphibians was identified in ponds 4 and 5 based on the presence of toxicity in a surrogate species exposed to surface water samples in the laboratory. The WOE for this endpoint is "medium"

7.5.3 Measurement endpoint 4.C

Evaluate hatching and survival of wood frog eggs and tadpoles exposed to the ponds in the field

The ponds

In-situ field test using fertilized wood frog eggs and week-old wood frog tadpoles enclosed in floating cages indicated that the surface water flowing through pond 4 was chronically toxic to week-old tadpoles, whereas the surface water flowing through pond 5 was acutely toxic to newly hatched tadpoles. These data indicated that the surface water from the two ponds was highly toxic to the embryo-larval stages of amphibians and was unsuitable for amphibian breeding.

Risk conclusion for measurement endpoint 4.C

Severe ecological risk to the early life stages of amphibians was identified in ponds 4 and 5 based on exposures of fertilized eggs and tadpoles in the field. The WOE for this endpoint is "medium-high".

7.5.4 WOE integration for assessment endpoint 4

Attachment 7.61 summarizes the WOE integration for the three measurement endpoints evaluated under assessment endpoint 4. The preponderance of the evidence strongly indicated that the surface water flowing through ponds 4 and 5 was severely affected by AMD released from the Site. These two ponds were unable to provide suitable amphibian breeding habitat under existing conditions.

7.6 ASSESSMENT ENDPOINT 5: INSECTIVOSOUS BIRDS

Stable and healthy insectivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous bird populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

7.6.1 Measurement endpoint 5.A

Use sediment analytical data to estimate the body residues of COPECs in winged aquatic insects; use food chain modeling to calculate the mean and maximum daily doses to tree swallows from ingesting surface water and winged aquatic insects, and compare these values to TRVs.

The ponds on the east branch of Ely Brook

Risk to insectivorous birds was not evaluated for the four ponds because their surface areas were too small to be considered reasonable EUs for this receptor group.

The main stem of Ely Brook

Risk to insectivorous birds was not evaluated because aquatic insects were absent from the main stem of Ely Brook. Also, other lines of evidence showed that this habitat was severely degraded.

Schoolhouse Brook

Site RME and CTE effect HQs were exceeded by Co, Cu, Se, and V (Attachment 7.62).

Reference RME and CTE effect HQs were not exceeded by any of the COPECs (**Attachment 7.63**).

The RME and CTE effect IRs exceeded 1.0 for Co (RME IR = 3.6 and CTE IR = 1.1), Cu (RME IR = 1.1 and CTE IR = 6.4), and Se (RME IR = 3.9 and CTE IR < 2.5) (Attachment 7.64).

It was concluded, with a high level of confidence, that risk was possible to insectivorous birds feeding at Schoolhouse Brook. Cu was identified as the main risk driver for this receptor group, although the exceedances were relatively small.

The EBOR

Site RME and CTE effect HQs were exceeded by Co, Cu, Se, and V (Attachment 7.65).

Reference RME and CTE effect HQs were exceeded by Se and V (Attachment 7.66).

The RME and CTE effect IRs exceeded 1.0 for Co (RME IR = 5.0 and CTE IR < 1.0) and Cu (RME IR = 2.6 and CTE IR = 1.6) (Attachment 7.67).

It was concluded, with a high level of confidence, that risk was possible to insectivorous birds feeding at the EBOR. However, Cu had a CTE effect IR of 1.6, suggesting that this COPEC was unlikely to cause severe long-term impairment to this receptor group.

Risk conclusion for measurement endpoint 5.A

Measurement endpoint 5.A identified Cu as a potential stressor to insectivorous birds feeding at Schoolhouse Brook, but not at the EBOR. The WOE for this measurement endpoint was "medium-low".

7.6.2 WOE integration for assessment endpoint 5

Attachment 7.68 summarizes the WOE integration for the single measurement endpoint evaluated under assessment endpoint 5.A. The preponderance of the evidence strongly indicated that insectivorous birds feeding at Schoolhouse Brook have a potential for ecological risk, mainly from exposure to Cu. However, the risk is not expected to be severe due to the relatively low CTE effect IR exceedance of Cu. The potential for ecological risk to insectivorous birds feeding at the EBOR is present but is considered minimal.

7.7 ASSESSMENT ENDPOINT 6: INSECTIVOROUS MAMMALS

Stable and healthy insectivorous mammal populations: Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of insectivorous mammal populations foraging along Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

7.7.1 Measurement endpoint 6.A

Use sediment analytical data to estimate the body residues of COPECs in winged aquatic insects; use food chain modeling to calculate the mean and maximum daily doses to eastern small-footed bats from ingesting surface water and winged aquatic insects, and compare these values to TRVs

The ponds on the east branch of Ely Brook

Risk to insectivorous mammals was not evaluated for the ponds because the total surface area of the four ponds was too small to be considered a reasonable EU for this receptor group.

The main stem of Ely Brook

Risk to insectivorous birds was not evaluated because aquatic insects were absent from the main stem of Ely Brook. Also, other lines of evidence showed that this habitat was severely degraded.

Schoolhouse Brook

Site RME and CTE effect HQs were exceeded by Co, Cu, Mn, Se, and V (Attachment 7.69).

Reference RME and CTE effect HQs were exceeded by Cu, Tl, and V (Attachment 7.70).

The RME and CTE effect IRs exceeded 1.0 for Co (RME IR = 1.8 and CTE IR < 1.0), Cu (RME IR = 40 and CTE IR = 24), and Se (RME IR = 1.4 and CTE IR < 1.0) (Attachment 7.71).

It was concluded, with a high level of confidence, that risk was possible to insectivorous mammals feeding at Schoolhouse Brook. Cu was identified as the main risk driver for this receptor group.

• The EBOR

Site RME and CTE effect HQs were exceeded by Co, Cu, Tl, and V (Attachment 7.72).

Reference RME and CTE effect HQs were exceeded by Se, TI, and V (Attachment 7.73).

The RME and CTE effect IRs exceeded 1.0 for Co (RME IR = 2.5 and CTE IR < 1.0), Cu (RME IR = 10 and CTE IR = 5.9), and V (RME IR = 2.2 and CTE IR < 1.0) (**Attachment 7.74**).

It was concluded, with a high level of confidence, that risk was possible to insectivorous mammals feeding at the EBOR. Cu was identified as the main risk driver for this receptor group.

Risk conclusion for measurement endpoint 6.A

Measurement endpoint 6.A identified Cu as a potential stressor to insectivorous mammals feeding at Schoolhouse Brook and the EBOR. The potential for ecological risk was substantially higher at Schoolhouse Brook than at the EBOR. The WOE for this measurement endpoint was "medium-low".

7.7.2 WOE integration for assessment endpoint 6

Attachment 7.75 summarizes the WOE integration for the single measurement endpoint evaluated under assessment endpoint 6. The preponderance of the evidence strongly indicated that insectivorous mammals feeding at Schoolhouse Brook and the EBOR have a potential for ecological risk from exposure to Cu. The risk is expected to be substantially higher at Schoolhouse Brook.

7.8 ASSESSMENT ENDPOINT 7: PISCIVOROUS BIRDS

Stable and healthy piscivorous bird populations: Are the COPEC levels in surface water and biota sufficiently high to impair piscivorous bird populations foraging in Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

7.8.1 Measurement endpoint 7.A

Use food chain modeling to calculate the mean and maximum daily doses to belted kingfishers from ingesting surface water and fish, and compare these values to TRVs

• The ponds on the east branch of Ely Brook

Risk to piscivorous birds was not evaluated for the ponds because the total surface area of the four ponds was too small to be considered a reasonable EU for this receptor group.

The main stem of Ely Brook

Risk to piscivorous birds was not evaluated for the main stem of Ely Brook because fish cannot live in this section of the brook under current conditions. Hence, fish-eating birds were not expected to forage in that EU. Also, other lines of evidence showed that this habitat was severely degraded.

Schoolhouse Brook

No COPECs exceeded the site RME and CTE effect HQs (Attachment 7.76) or the reference RME and CTE effect HQs (Attachment 7.77). Hence, the RME and CTE effect IRs were also below 1.0 for all COPECs (Attachment 7.78).

It was concluded, with a high level of confidence, that risk was not present to the belted kingfisher feeding on fish captured from this aquatic habitat.

The EBOR

No COPECs exceeded the site RME and CTE effect HQs (Attachment 7.79). Reference RME and CTE effect HQs were exceeded only by Se (Attachment 7.80). The RME and CTE effect IRs were below 1.0 for all COPECs (Attachment 7.81).

It was concluded, with a high level of confidence, that risk was not present to the piscivorous birds feeding at the EBOR.

Risk conclusion for measurement endpoint 7.A

Measurement endpoint 7.A did not identify ecological risk to piscivorous birds feeding at Schoolhouse Brook and the EBOR.

7.8.2 WOE integration for assessment endpoint 7

Attachment 7.82 summarizes the WOE integration for the single measurement endpoint evaluated under assessment endpoint 7. The preponderance of the evidence strongly indicated that piscivorous birds feeding at Schoolhouse Brook and the EBOR will not experience ecological risk from exposure to Site COPECs.

7.9 ASSESSMENT ENDPOINT 8: PISCIVOROUS MAMMALS

Stable and healthy piscivorous mammal populations: Are the COPEC levels in surface water and biota sufficiently high to impair piscivorous mammals populations foraging in Schoolhouse Brook and the EBOR?

One measurement endpoint was used to assess the potential impacts of COPECs ingested by this receptor group:

7.9.1 Measurement endpoint 8.A

Use food chain modeling to calculate the mean and maximum daily doses to mink from ingesting surface water and fish, and compare these values to TRVs

The ponds on the east branch of Ely Brook

Risk to piscivorous mammals was not evaluated for the ponds because the total surface area of the four ponds was too small to be considered a reasonable EU for this receptor group.

The main stem of Ely Brook

Risk to piscivorous mammals was not evaluated for the main stem of Ely Brook because current conditions are such that fish cannot live in the brook. Hence, fish-eating birds were not expected to forage in that EU. Also, other lines of evidence showed that this habitat was severely degraded.

Schoolhouse Brook

No COPECs exceeded the site RME and CTE effect HQs (Attachment 7.83) or the reference RME and CTE effect HQs (Attachment 7.84). Hence, the RME and CTE effect IRs were also

below 1.0 for all COPECs (**Attachment 7.85**). It was concluded, with a high level of confidence, that risk was not present to the mink feeding on fish captured from Schoolhouse Brook.

The EBOR

No COPECs exceeded the site RME and CTE effect HQs (**Attachment 7.86**) or the reference RME and CTE effect HQs (**Attachment 7.87**). Hence, the RME and CTE effect IRs were also below 1.0 for all COPECs (**Attachment 7.88**). It was concluded, with a high level of confidence, that risk was not present to the mink feeding on fish captured from the EBOR.

Risk conclusion for measurement endpoint 8.A

Measurement endpoint 8.A did not identify ecological risk to piscivorous mammals feeding at Schoolhouse Brook and the EBOR.

7.9.2 WOE integration for assessment endpoint 8

Attachment 7.89 summarizes the WOE integration for the single measurement endpoint evaluated under assessment endpoint 8. The preponderance of the evidence strongly indicated that piscivorous mammals feeding at Schoolhouse Brook and the EBOR will not experience ecological risk from exposure to Site COPECs.

7.10 UNCERTAINTY ANALYSIS

7.10.1 Introduction

Uncertainty is an integral part of risk characterization. Many assumptions and decisions were made to generate and manipulate the data used in the risk estimation. A key component of the process is to identify the main sources of uncertainty for each measurement endpoint and see how those uncertainties could affect the outcome of the risk calculations. This information gives a better understanding of how the risk conclusions should be interpreted during the risk management decision-making process. **Attachment 7.90** describes the major uncertainties for the risk estimations of the aquatic portion of the Ely Copper Mine BERA. The text below summarizes this information.

Note that one important uncertainty applies across all of the assessment endpoints evaluated in this BERA. The exposures derived from analytical data (i.e., sediment, pore water, surface water, fish tissues, and EDDs) included all available data points. An outlier test was performed as part of the ProUCL evaluation, but no data points were eliminated as a result. Hence, any of the risks derived from exposures which included one or more statistical outliers has the potential to be somewhat overestimated.

7.10.2 Major uncertainties associated with assessing risk to benthic invertebrates

7.10.2.1 Measurement endpoint 1.A:

Compare sediment COPECs to benchmarks

Overall, it is anticipated that the potential for ecological risk was moderately overestimated for this measurement endpoint. A major reason is that the screening benchmarks were generic and conservative values which did not consider site-specific factors affecting bioavailability. The overestimation of risk should be mitigated because the substrate in the affected waterways had little or no AVS or TOC to bind the COPECs. However, other unquantified phases (e.g., iron oxides) could also have served as binding agents. The second reason was that strong acids were used to release COPECs from the sediment matrix before chemical analyses. These digestions generated conservative data because they did not mimic the bioavailability experienced by aquatic receptors in the field.

7.10.2.2 Measurement endpoint 1.B:

Compare pore water COPECs to benchmarks

Overall, it is anticipated that the potential for ecological risk was moderately underestimated for this measurement endpoint. The main reason was that pore water was collected only during summer base flow when the COPEC load moving through the waterways would have been at a minimum and surface water hardness would be at a maximum. The pore water chemistry would likely have been worse if sampling had occurred when surface water flow was higher (e.g., during spring snowmelt or fall runoff). The potential for severe underestimation of pore water toxicity is somewhat mitigated because the screening benchmarks were generic and conservative values protective of a broad range of aquatic receptors.

7.10.2.3 Measurement endpoint 1.C:

Measure AVS-SEM to estimate the bioavailability of metals in sediment

Overall, it is anticipated that the potential for ecological risk was up to moderately overestimated. The main reason was that sediment is not necessarily toxic when SEM exceeds AVS because other unquantified binding phases (e.g., iron oxides) can decrease the bioavailability of metals in sediment. The lack of TOC data only had a minor effect on the conclusion. The reason was that the sediment in the affected waterways were relatively coarse and therefore unlikely to contain or retain large amounts of TOC.

7.10.2.4 Measurement endpoints 1.D:

Toxicity testing of H. azteca and C. tentans exposed to pore water in the laboratory

Overall, it is anticipated that the potential for ecological risk was moderately to severely underestimated for this measurement endpoint. The main reason for this conclusion was that pore water was collected only during summer base flow when the COPEC load moving through the waterways was at a minimum and surface water hardness would be at a maximum. The pore water chemistry would likely have been worse if sampling had occurred when surface water flow was higher (e.g., during spring snowmelt or after periods of significant rainfall). Also, the 96-hours exposure period only measured short-term toxicity. A lack of mortality after 96 hours did not mean that chronic effects would not have emerged under longer exposures.

7.10.2.5 Measurement endpoint 1.E:

Toxicity testing of H. azteca and C. tentans exposed to sediment in the laboratory

Overall, it is anticipated that the potential for ecological risk was moderately overestimated for this measurement endpoint. The main reason was that the sediment samples were collected from the few available depositional areas in the waterways, which represented a "worse case" exposure scenario. This bias may have been further enhanced because the conditions in the test beakers were more static (= greater chance for COPECs to dissociate from sediment into the interstitial water) than those found in the affected waterways. One the other hand, changes in sediment chemistry in some of the beakers over time could have decreased bioavailability due to metal precipitation, as was the case for one of the bulk sediment samples collected from the main stem of Ely Brook.

7.10.2.6 Measurement endpoint 1.F:

Benthic invertebrate community survey

Overall, it is anticipated that the potential for ecological risk for this measurement endpoint was as reported in the risk characterization. The observed structure of the benthic community represented a long-term, chronic response to local chemical conditions in substrate, pore water, and surface water integrated over time. Also, a comprehensive field survey of the substrate in all of the affected waterways was performed in 2006 before selecting the benthic invertebrate sampling locations. This process minimized the intrinsic variability in community structure commonly found as a result of differences in habitat quality. Finally, the published benthic community metrics used in the field data interpretation were obtained by the State of Vermont from streams with physical and hydrologic characteristics similar to those found in the waterways at the Site.

7.10.3 Major uncertainties associated with assessing risk to water column invertebrates in the ponds

7.10.3.1 Measurement endpoint 2.A:

Compare surface water COPECs to benchmarks

Overall, it is anticipated that the potential for ecological risk in the ponds was moderately underestimated for this measurement endpoint. The main reason was that the surface water data used in the evaluation were collected mostly during May and June. As such, the water chemistry did not represent conditions that would occur during spring snowmelt or after significant rain events throughout the year. The potential for severe underestimation of risk during high flow was somewhat mitigated because the surface water screening benchmarks were generic and conservative values protective of a broad range of sensitive aquatic receptors.

7.10.4 Major uncertainties associated with assessing risk to fish

7.10.4.1 Measurement endpoint 3.A:

Compare surface water COPECs to benchmarks

Overall, it is anticipated that the potential for ecological risk was moderately underestimated for this measurement endpoint. The main reason was that the surface water benchmarks did not account for low pH conditions that may occur in some of the water ways at certain times of the year, in addition to the high COPEC levels. On the other hand, the surface water screening benchmarks were generic and conservative values protective of a broad range of sensitive aquatic receptors. Other potential factors (i.e., a comprehensive surface water chemistry data set for the three waterways, the availability of screening benchmarks for all of the COPECs, and using dissolved metals data) would have had little or no effect on the risk associated with this measurement endpoint.

7.10.4.2 Measurement endpoint 3.B:

Surface water toxicity testing using juveniles of the fathead minnow

Overall, it is anticipated that the potential for ecological risk was moderately underestimated for this measurement endpoint. The main reason for this conclusion was that the surface water samples used in the laboratory toxicity tests were collected during a three-day period in late June of 2006. As such, the water chemistry did not represent more toxic conditions expected during spring snowmelt or after significant rain events throughout the year. Further underestimation of risk is also associated with testing a single fish species for a relatively short duration, and potential changes in the COPEC concentration of the renewal water due to metal precipitation.

7.10.4.3 Measurement endpoint 3.C:

Compare COPECs in fish tissue to CBRs

Overall, it is anticipated that the potential for ecological risk was moderately overestimated for this measurement endpoint. The main reason is that both the species-specific CBRs and final salmonid CBRs represented geometric means of literature-derived tissue residue data. The geometric mean produced conservative CBRs because it minimized the influence of high (= less conservative) tissue levels on the calculations. The potential for CBRs to overestimate risk was somewhat mitigated by the fact that the cumulative risk of multiple COPECs was not considered and fish with excessively high body burdens of COPECs may have died off and would have been excluded from the evaluation.

7.10.4.4 Measurement endpoint 3.D:

Fish community surveys

Overall, it is anticipated that the potential for ecological risk was as reported for this measurement endpoint. The main reasons for this conclusion were that: (1) the overall structure of the local fish community represents a long-term, chronic response to chemical conditions integrated over multiple years, and (2) the published fish community metrics used in the field data interpretation were obtained by the State of Vermont from streams with physical and hydrologic characteristics similar to those found in the waterways at the Site.

7.10.5 Major uncertainties associated with assessing risk to amphibians

7.10.5.1 Measurement endpoint 4.A:

Compare surface water COPECs to benchmarks

Overall, it is anticipated that the potential for ecological risk was slightly underestimated for this measurement endpoint. The main reason was that the surface water benchmarks did not account for low pH conditions that may occur at certain times of the year, in addition to the regular COPEC levels. On the other hand, the surface water screening benchmarks were generic and conservative values protective of a broad range of sensitive aquatic receptors. Also, most of the surface water samples from the ponds were collected during the period of tadpole development (i.e., May and June).

7.10.5.2 Measurement endpoint 4.B:

Surface water toxicity testing using the fathead minnow

Overall, it is anticipated that the potential for ecological risk was moderately underestimated for this measurement endpoint. The main reason was that the surface water samples used in the laboratory toxicity tests were collected during a three-day period in late June of 2006. As such, the water chemistry did not represent the full range of conditions that might occur during the amphibian breeding season. Further underestimation of risk is also associated with using a fish species as a surrogate for amphibians. using a relatively short exposure duration, and potential changes in the COPEC concentration of the renewal water due to metal precipitation.

7.10.5.3 Measurement endpoint 4.C:

In-situ toxicity testing using wood frog eggs and tadpoles

Overall, it is anticipated that the potential for ecological risk could have ranged from as reported to a moderate underestimation for this measurement endpoint. The main reason for this ambiguous conclusion was that it was not known how the sensitivity of the embryo-larval stages of the wood frog used in the *in-situ* toxicity tests compares to that of other local amphibian species (e.g., green frog and eastern newts) known to use the ponds for breeding. Risk is as reported if the wood frog is the most sensitive local amphibian species. However, risk would be moderately underestimated if other local species are more sensitive to the current ambient conditions than the wood frog. The data from the long-

term, *in-situ* tadpole exposures were also compromised by the complete mortality observed at both reference locations.

7.10.6 Major uncertainties associated with assessing risk to piscivorous birds and mammals

7.10.6.1 Measurement endpoint 5.A and 6.A:

Food chain modeling using measured fish tissue residue data

Overall, it is anticipated that the potential for ecological risk may be moderately overestimated for this measurement endpoint. The main reasons for this conclusion were that: (1) several of the exposure parameters (mainly area use factors and COPEC bioavailability) used in food chain modeling were conservative values for lack of site- or species-specific information, and (2) the TRVs were conservative and non-species-specific values derived from the literature.

7.10.7 Major uncertainties associated with assessing risk to insectivorous birds and mammals

7.10.7.1 Measurement endpoint 7.A and 8.A:

Food chain modeling using estimated insect tissue residue data

Overall, it is anticipated that the potential for ecological risk may be overestimated by a large margin for this measurement endpoint. The main reasons for this conclusion were that: (1) the concentrations of COPECs in insects were obtained using generic, literature-derived BAFs instead of measured tissue residues from insects collected at the Site, (2) several of the exposure parameters (mainly area use factors and COPEC bioavailability) used in food chain modeling were conservative values for lack of site- or species-specific information, and (3) the TRVs were conservative and non-species-specific values derived from the literature.

Attachment 7.1 Hazard Quotients for Sediment COPECs in Pond 2 Baseline Ecological Risk Assessment Ely Cooper Mine Superfund Site, Vershire, VT

				No Effect		Effect		No Effect HQ		Effect HQ	
COPECs	Frequency of Detection	RME	CTE	Sediment Benchmark	Source	Sediment Benchmark	Source	RME	CTE	RME	CTE
Metals (mg/kg, DW)											
Barium	1 / 1	321	321	0.7	(3)	NA		459	459		70 M
Beryllium	1/1	1.8	1.8	· NA	***************************************	NA		***		# 10	MA BEE
Cadmium	1 / 1	1.3	1.3	0.99	(1)	4.98	(a)	1.3	1.3	0.3	0.3
Chromium	1/1	130	130	43.4	(1)	111	(a)	3.0	3.0	1.2	1.2
Copper	1/1	87.6	87.6	31.6	(1)	149	(a)	2.8	2.8	0.6	0.6
Manganese	1/1	769	769	630	(3)	1100	(c)	1.2	1.2	0.7	0.7
Molybdenum	1/1	2.6	2.6	NA		NA			**		20
Nickel	1/1	45.4	45.4	22.7	(1)	48.6	(a)	2.0	2.0	0.9	0.9
Selenium	1/1	1.1	1.1	0.29	(3)	NA		3.8	3.8	10 10	901 400
Silver	0 / 1	0.5	0.5	0.5	(1)	3.7	(b)	1.0	1.0	0.1	0.1
Strontium	1/1	165	165	49.0	(3)	NA		3.4	3.4	== m)	en at
Vanadium	1/1	148	148	50	(3)	NA		3.0	3.0		***
Zinc	1/1	131	131	121	(1)	459	(a)	1.1	1.1	0.3	0.3

COPECs - Chemicals of Potential Ecological Concern

mg/kg, DW = milligrams per kilogram, Dry Weight

NA - Not Available

HQ - Hazard Quotient

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. USEPA, 2003. Region V Ecological Screening Levels, www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton, 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario, Ontario, Ontario, Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.2 Hazard Quotients for Sediment COPECs in Reference Pond (Pond 1) Baseline Ecological Risk Assessment Ely Cooper Mine Superfund Site, Vershire, VT

				No Effect Sedimen	t	Effect Sediment	tl T	No Eff	ect HQ	Effec	t HQ
COPECs	Frequency of Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals (mg/kg, DW)											
Barium	2 / 2	276	175	0.7	(3)	NA		394	249		
Beryllium	1/2	1.8	1.2 .	NA		NA			**		
Cadmium	1 / 2	0.80	0.98	0.99	(1)	4.98	(a)	8.0	1.0	0.2	0.2
Chromium	2 / 2	102	71.0	43.4	(1)	111	(a)	2.4	1.6	0.9	0.6
Cobalt	2 / 2	19.8	16.4	50	(1)	NA		0.4	0.3		
Copper	2 / 2	86.6	65.3	31.6	(1)	149	(a)	2.7	2.1	0.6	0.4
Lead	2 / 2	26.4	17.0	35.8	(1)	128	(a)	0.7	0.5	0.2	0.1
Manganese	2 / 2	527	339	630	(3)	1100	(d)	8.0	0.5	0.5	0.3
Molybdenum	2 / 2	0.63	0.62	NA		NA					
Nickel	2 / 2	35.6	30.3	22.7	(1)	48.6	(a)	1.6	1.3	0.7	0.6
Selenium	2 / 2	0.74	0.72	0.29	(3)	NA		2.6	2.5		**
Silver	0 / 2	0.58	0.83	0.5	(1)	3.7	(c)	1.2	1.7	0.2	0.2
Strontium	1 / 1	172	86.0	49	(3)	NA		3.5	1.8	***	••
Tin	1 / 2	3.0	2.1	5	(3)	NA		0.6	0.4		
Vanadium	1/1	163	81.5	50	(3)	NA		3.3	1.6		••
Zinc	2 / 2	126	88.0	121	(1)	459	(a)	1.0	0.7	0.3	0.2

COPECs - Chemicals of Potential Ecological Concern

mg/kg, DW = milligrams per kilogram, Dry Weight

NA - Not Available

HQ - Hazard Quotient

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory, ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.3 Incremental Risk for Sediments in Pond 2 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			No Effect	Scenario					Effect S	cenario		
		Hazard (Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremental Risk*	
COPEC	Site-RME	Site-RME Site-CTE REF-RME REF-CTE				CTE	Site-RME	Site-CTE	RME	CTE		
Metals												
Barium	459	459	394	249	64.3	209			***	100 sab		
Beryllium		***						est uni	THE STATE OF THE PROPERTY OF T	mar see		
Cadmium	1.3	1.3	0.8	1.0	<1	<1	0.3	0.3	0.2	0.2	<1	<1
Chromium	3.0	3.0	2.4	1.6	<1	1	1.2	1.2	0.9	0.6	<1	<1
Copper	2.8	2.8	2.7	2.1	<1	<1	0.6	0.6	0.6	0.4	<1	<1
Manganese	1.2	1.2	0.8	0.5	<1	<1	0.7	0.7	0.5	0.3	<1	<1
Molybdenum		AN PRI	== .	**************************************			me					
Nickel	2.0	2.0	1.6	1.3	<1	<1	0.9	0.9	0.7	0.6	<1	<1
Selenium	3.8	3.8	2.6	2.5	1.2	1	**		## ##			
Silver	1.0	1.0	1.2	1.7	<1	<1	0.1	0.1	0.2	0.2	<1	<1
Strontium	- 3.4	3.4	3.5	1.8	<1	2			THE REAL PROPERTY OF THE PROPE			
Vanadium	3.0	3.0	3.3	1.6	<1	1		==	## ##	ma eta Seneral de la companya del companya del companya de la comp		
Zinc	1.1	1.1	1.0	0.7	<1	<1	0.3	0.3	0.3	0.2	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

Created by: RAR 5/21/2008 QC'd by: EK 5/27/2008

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area location.

Attachment 7.4 Hazard Quotients for Sediment COPECs in Pond 3 Baseline Ecological Risk Assessment Ely Cooper Mine Superfund Site, Vershire, VT

				No Effect Sediment		Effect Sediment		No Effect HQ		Effect HQ	
COPECs	Frequency of Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals (mg/kg, DW)											
Barium	1 / 1	377	377	0.7	(3)	NA		539	539		**
Beryllium	1 / 1	1.6	1.6	NA		NA			**		
Cadmium	1 / 1	1.2	1.2	0.99	(1)	4.98	(a)	1.2	1.2	0.2	0.2
Chromium	1 / 1	85	85	43.4	(1)	111	(a)	2.0	2.0	0.8	0.8
Copper	1/1	81.7	81.7	31.6	(1)	149	(a)	2.6	2.6	0.5	0.5
Lead	1 / 1	43.7	43.7	35.8	(1)	128	(a)	1.2	1.2	0.3	0.3
Manganese	1 / 1	3130	3130	630	(3)	1100	(c)	5.0	5.0	2.8	2.8
Molybdenum	1/1	2.2	2.2	NA		NA		MI 100	***		Me Mt.
Nickel	1 / 1	38.6	38.6	22.7	(1)	48.6	(a)	1.7	1.7	0.8	0.8
Selenium	1 / 1	1.4	1.4	0.29	(3)	NA	***************************************	4.8	4.8	ww	
Silver	0 / 1	0.50	0.50	0.5	(1)	3.7	(b) .	1.0	1.0	0.1	0.1
Strontium	1 / 1	134	134	49.0	(3)	NA	Account to the state of the sta	2.7	2.7	es es	######################################
Vanadium	1 / 1	125	125	50	(3)	NA		2.5	2.5	NV MI	
Zinc	1/1_	127	127	121	(1)	459	(a)	1.0	1.0	0.3	0.3

COPECs - Chemicals of Potential Ecological Concern

mg/kg, DW = milligrams per kilogram, Dry Weight

NA - Not Available

HQ - Hazard Quotient

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.5 Incremental Risk for Sediments in Pond 3 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

										4		······································
			No Effe	ct Scenario					Effect S	cenario		
		Hazard	Quotient		Incremen	ital Risk*		Hazard	Quotient		Incremental Risk*	
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	RME	CTE		
Metals												
Barium	539	539	394	249	144	289			'			-
Beryllium			**	**						en en		
Cadmium	1.2	1.2	0.8	1.0	<1	<1	0.2	0.2	0.2	0.2	<1	7
Chromium	2.0	2.0	2.4	1.6	<1	<1	0.8	0.8	0.9	0.6	<1	<1
Copper	2.6	2.6	2.7	2.1	<1	<1	0.5	0.5	0.6	0.4	<1	<1
Lead	1.2	1.2	0.7	0.5	<1	<1	0.3	0.3	0.2	0.1	<1	<1
Manganese	5.0	5.0	0.8	0.5	4.1	4.4	2.8	2.8	0.5	0.3	2.4	2.5
Molybdenum	. *************************************	200 MIT	en ent	==		-	##		***	Mar 1841		
Nickel	1.7	1.7	1.6	1.3	<1	<1	0.8	0.8	0.7	0.6	<1	<1
Selenium	4.8	4.8	2.6	2.5	2.3	2.3		est ess	AND THE PERSON NAMED OF TH	M 10		-
Silver	1.0	1.0	1.2	1.7	<1	<1	0.1	0.1	0.2	0.2	<1	<1
Strontium	2.7	2.7	3.5	1.8	<1	<1			Mo est			
Vanadium	2.5	2.5	3.3	1.6	<1	<1			AND THE PERSON NAMED OF PERSONS ASSESSED AND ADDRESS OF			
Zinc	1.0	1.0	1.0	0.7	<1	<1	0.3	0.3	0.3	0.2	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area location.

Attachment 7.6 Hazard Quotients for Sediment COPECs in Pond 4 Baseline Ecological Risk Assessment Ely Cooper Mine Superfund Site, Vershire, VT

	Frequency of			No Effect Sediment		Effect Sediment		No Effect HQ		Effec	ct HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals (mg/kg, DW)											
Barium	2/2	337	219	0.7	(3)	NA		481	312	**	
Beryllium	1 / 2	1.6	1.1	NA		NA		***	-	***	
Cadmium	2/2	2.5	1.8	0.99	(1)	4.98	(a)	2.5	1.8	0.5	0.4
Chromium	2/2	67	63.5	43.4	(1)	111	(a)	1.5	1.5	0.6	0.6
Copper	2/2	400	390	31.6	(1)	149	(a)	12.7	12.3	2.7	2.6
Manganese	2/2	2410	1665	630	(3)	1100	(c)	3.8	2.6	2.2	1.5
Molybdenum	2/2	1.8	1.4	NA		NA		***	***		
Nickel	2/2	61.1	58.6	22.7	(1)	48.6	(a)	2.7	2.6	1.3	1.2
Selenium	2/2	1.3	1.00	0.29	(3)	NA	***************************************	4.5	3.4	##	MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND
Silver	0 / 2	1.2	0.85	0.5	(1)	3.7	(b)	2.4	1.7	0.3	0.2
Strontium	1 / 1	91.9	46.0	49.0	(3)	NA		1.9	0.9	** .	Nº PR
Thallium	0/1.	1.2	0.60	NA		NA		er in	***	***	***
Vanadium	2/2	93	75.5	50	(3)	· NA		1.9	1.5	***	m.e.
Zinc	2/2	320	318	121	(1)	459	(a)	2.6	2.6	0.7	0.7

COPECs - Chemicals of Potential Ecological Concern

mg/kg, DW = milligrams per kilogram, Dry Weight

NA - Not Available

HQ - Hazard Quotient

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1, USEPA, 2003, Region V Ecological Screening Levels, www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R.; D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.7 Incremental Risk for Sediments in Pond 4 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			No Effect	Scenario					Effect S	cenario	-	-
		Hazard	Quotient		Incremen	ntal Risk*		Hazard	Quotient		Incremental Risk*	
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals	-										100	
Barium	481	312	394	249	87	63		***				
Beryllium												
Cadmium	2.5	1.8	0.8	1.0	1.7	<1	0.5	0.4	0.2	0.2	<1	<1
Chromium	1.5	1.5	2.4	1.6	<1	<1	0.6	0.6	0.9	0.6	<1	<1
Copper	13	12	2.7	2.1	9.9	10	2.7	2.6	0.6	0.4	2.1	2.2
Manganese	3.8	2.6	0.8	0.5	3.0	2.1	2.2	1.5	0.5	0.3	1.7	1.2
Molybdenum		AND ME	W 100	PRE MIS			m m	NA 100 .	ME 465	ma say		
Nickel	2.7	2.6	1.6	1.3	1.1	1.2	1.3	1.2	0.7	0.6	<1	<1
Selenium	4.5	3.4	2.6	2.5	1.9	<1	eq. ==	986 MB	as as	- mar 1/10		
Silver	2.4	1.7	1.2	1.7	1.3	<1	0.3	0.2	0.2	0.2	<1	<1
Strontium	1.9	0.9	3.5	1.8	<1	<1		SMP 400 David Byrg Byrg Germanian (SMB 100 Per	m m:	mi mi		
Thallium			NA	NA				## ##	NA	NA		
Vanadium	1.9	1.5	3.3	1.6	<1	<1	## M	- ME 200	MI M	Not see	-	
Zinc	2.6	2.6	1.0	0.7	1.6	1.9	0.7	0.7	0.3	0.2	<1	<1

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area location.

NA - Not Available - thallium was not analyzed for in Pond 1.

Attachment 7.8 Hazard Quotients for Sediment COPECs in Pond 5 Baseline Ecological Risk Assessment Elv Cooper Mine Superfund Site, Vershire, VT

				No Effect		Effect		No Eff	ect HQ	Effec	t HQ
COPECs	Frequency of Detection	RME	CTE	Sediment	Source	Sediment	Source	RME	CTE	RME	CTE
Metals (mg/kg, DW)											
Barium	1 / 1	296	296	0.7	(3)	NA		423	423		
Beryllium	1/1	1.6	1.6	NA ·		NA			***		***
Cadmium	1 / 1	4	4	0.99	(1)	4.98	(a)	4.0	4.0	0.8	0.8
Chromium	1 / 1	70	70	43.4	(1)	111	(a)	1.6	1.6	0.6	0.6
Cobalt	1 / 1	78.3	78.3	50	(1)	NA		1.6	1.6		***
Copper	1 / 1	3540	3540	31.6	(1)	149	(a)	112	112	24	24
Manganese	1/1	1430	1430	630	(3)	1100	(c)	2.3	2.3	1.3	1.3
Molybdenum	1/1	2.5	2.5	NA		NA					
Nickel	1/1	56.8	56.8	22.7	(1)	48.6	(a)	2.5	2.5	1.2	1.2
Selenium	1/1	1.3	1.3	0.29	(3)	NA		4.5	4.5		
Silver	0 / 1	0.5	0.5	0.5	(1)	3.7	(b)	1.0	1.0	0.1	0.1
Strontium	1/1	76.5	76.5	49.0	(3)	NA		1.6	1.6		•••
Tin	1/1	1.6	1.6	5.0	(3)	NA		0.3	0.3		
Vanadium	1 / 1	79.0	79.0	50	(3)	NA		1.6	1.6		
Zinc	1/1	507	507	121	(1)	459	(a)	4.2	4.2	1.1	1.1

COPECs - Chemicals of Potential Ecological Concern

mg/kg, DW = milligrams per kilogram, Dry Weight

NA - Not Available

HQ - Hazard Quotient

RME - Reasonable Maximum Exposure

CT - Central Tendency Exposure

- 1, USEPA, 2003. Region V Ecological Screening Levels, www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993, Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.9 Incremental Risk for Sediments in Pond 5 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	,											
			No Effe	ct Scenario		•			Effect S	cenario		
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Increme	ntal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Barium	423	423	394	249	29	174		ma een		***		
Beryllium	, ma par							AND THE		en m		
Cadmium	4.0	4.0	0.8	1.0	3.2	3.1	0.8	0.8	0.2	0.2	<1	<1
Chromium	1.6	1.6	2.4	1.6	<1	<1	0.6	0.6	0.9	0.6	<1	<1
Cobalt	1.6	1.6	0.4	0.3	1.2	1.2	M M	***	m m	==		11 (12 <u>14 </u>
Copper	112	112	2.7	2.1	109	110	24	24	0.6	0.4	23	23
Manganese	2.3	2.3	0.8	0.5	1.4	1.7	1.3	1.3	0.5	0.3	<1	<1
Molybdenum	100 € 100	EM DO	### ###	260 189				ma ma	. NO 100	==		
Nickel	2.5	2.5	1.6	1.3	<1	1.2	1.2	1.2	0.7	0.6	<1	<1
Selenium	4.5	4.5	2.6	2.5	1.9	2.0		= 4		***		
Silver	1.0	1.0	1.2	1.7	<1	<1	0.1	0.1	0.2	0.2	<1	<1
Strontium	1.6	1.6	3.5	1.8	<1	<1	## ##		MAD HERE			
Tin .	0.3	0.3	0.6	0.4	<1	<1	***		***			
Vanadium	1.6	1.6	3.3	1.6	<1	<1				***		
Zinc	4.2	4.2	1.0	0.7	3.1	3.5	1.1	1.1	0.3	0.2	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

Created by: RAR 5/21/2008 QC'd by: EK 5/27/2008

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area location.

Hazard Quotients for Sediment COPECs in the Main Stem of Ely Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				No Effect		Effect					
	Frequency of			Sediment		Sediment		No Eff	ect HQ	Effec	t HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals										4	
Barium	32 / 32	115	66.0	0.7	(3)	NA		164	94		004 508
Beryllium	7 / 32	2.0	0.62	NA		NA					en su
Cadmium	9 / 12	3.2	1.5	0.99	(1)	4.98	(a)	3.2	1.5	0.6	0.3
Chromium	32 / 32	83.0	32.8	43.4	(1)	111	(a)	1.9	0.8	0.7	0.3
Cobalt	32 / 32	45.6	21.5	50	(1)	NA		0.9	0.4		COLUMN STATE OF THE STATE OF TH
Copper	32 / 32	3873	3101	31.6	(1)	149	(a)	123	98	26	21
Iron	32 / 32	141841	125288	188400	(3)	40000	. (d)	8.0	0.7	3.5	3.1
Lead	30 / 32	40.2	29.3	35.8	(1)	128	(a)	1.1	0.8	0.3	0.2
Manganese	32 / 32	1249	298	630	(3)	1100	(d)	2.0	0.5	1.1	0.3
Molybdenum	30 / 30	12.7	10.9	NA		NA					
Nickel	31 / 32	14.9	9.5	22.7	(1)	48.6	(a)	0.7	0.4	0.3	0.2
Selenium	30 / 30	31.8	28.5	0.29	(3)	NA		110	98		
Silver	27 / 31	3.9	3.2	0.5	(1)	3.7	(c)	7.8	6.4	1.0	0.9
Strontium	6'/ 6	123	88.0	49	(3)	NA		2.5	1.8		
Thallium	7 / 26	3.3	5.3	NA		NA		***			
Vanadium ·	32 / 32	69.6	61.0	50	(3)	NA		1.4	1.2		
Zinc	32 / 32	132.3	110	121	(1)	459	(a)	1.1	0.9	0.3	0.2

COPECs. - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory. ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaaqumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Hazard Quotients for Sediment COPECs in the Upstream Reference Section of Ely Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

***************************************	**************************************			No Effect		Effect					
	Frequency of			Sediment		Sediment		No Eff	ect HQ	Effec	t HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals											
Barium	13 / 13	159	106	0.7	(3)	NA		227	151		
Beryllium	3 / 13	1.6	0.74	NA		NA		* **	M9 300	***	**
Cadmium	6 / 13	0.83	0.75	0.99	(1)	4.98	(a)	8.0	0.8	0.2	0.2
Chromium	13 / 13	46.8	38.5	43.4	(1)	111	(a)	1.1	0.9	0.4	0.3
Cobalt	13 / 13	17.3	14.4	50	(1)	NA		0.3	0.3		**
Copper	13 / 13	693	343	31.6	(1)	149	(a)	22	11	4.6	2.3
Iron	12 / 12	21035	16973	188400	(3)	40000	(c)	0.1	. 0.1	0.5	0.4
Lead	11 / 13	14.0	10.7	35.8	(1)	128	(a)	0.4	0.3	0.1	0.1
Manganese	13 / 13	1667	789	630	(3)	1100	(c)	2.6	1.3	1.5	0.7
Molybdenum	11 / 11	2.4	0.87	NA '		NA			**		
Nickel	13 / 13	27.1	22.8	22.7	(1)	48.6	(a)	1.2	1.0	0.6	0.5
Selenium	11 / 13	2.4	2.2	0.29	(3)	NA		8.2	7.7		
Silver	0 / 13	2.1	0.96	0.5	(1)	3.7	(b)	4.2	1.9	0.6	0.3
Strontium	3 / 3	133	120	49	(3)	NA		2.7	2.4	**	.==
Thallium	0 / 10	27.5	5.8	NA		NA		MAC SOS		==	
Vanadium	13 / 13	58.8	44.1	50	(3)	NA		1.2	0.9		
Zinc	12 / 13	85.4	66.8	121	(1)	459	(a)	0.7	0.6	0.2	0.1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

- 1, USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory. ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.12 Incremental Risk for Sediments in Ely Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			··········						***************************************			
			No	Effect					Eff	ect		
		Hazar	d Quotient		Increme	ntal Risk*		Hazar	d Quotient	-	Incremer	ıtal Risk*
COPEC	RME	CTE	REF-RME	REF-CTE	RME	CTE	RME	CTE	REF-RME	REF-CTE	RME	CTE
Metals								,				
Barium	164	94	227	151	7	<1				***		
Beryllium		- ·						==				- 1 <u></u>
Cadmium	3.2	1.5	0.8	0.8	2.4	<1	0.6	0.3	0.2	0.2	<1	<1
Chromium	1.9	0.8	1.1	0.9	<1	<1	0.7	0.3	0.4	0.3	<1	<1
Cobalt	0.9	0.4	0.3	0.3	<1	<1	24 42		20 W			
Copper	123	98	22	11	101	87	26	21	4.6	2.3	21	19
Iron	0.8	0.7	0.1	0.1	<1	<1	3.5	3.1	0.5	0.4	3.0	2.7
Lead	1.1	0.8	0.4	0.3	<1	<1	0.3	0.2	0.1	0.1	<1	<1
Manganese	2.0	0.5	2.6	1.3	<1	<1	1.1	0.3	1.5	0.7	<1	<1
Molybdenum	er en			### ###					==	and here		
Nickel	0.7	0.4	1.2	1.0	<1	<1	0.3	0.2	0.6	0.5	<1	<1
Selenium	110	98	8.2	7.7	101	91				- Parline is the Collective Assistant Assistant Assistant Assistant Assistant Assistant Assistant Assistant As 		
Silver	7.8	6.4	4.2	1.9	3.6	4.5	1.0	0.9	0.6	0.3	<1	<1
Strontium	2.5	1.8	2.7	2.4	<1	<1	AN DE	****	***			
Thallium	WE HO						***			mi m		
Vanadium	1.4	1.2	1.2	0.9	<1	<1			**************************************	* ************************************		-
Zinc	1.1	0.9	0.7	0.6	<1	<1	0.3	0.2	0.2	0.1	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

Created by: RAR 5/22/2008 QC'd by: EK 5/29/2008

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area location.

Hazard Quotients for Sediment COPECs in School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

COREC	Frequency of			No Effect Sediment		Effect Sediment		No Eff	ect HQ	Effec	t HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Total (mg/kg)	, and the second se										
Arsenic	31 / 34	2.8	2.0	9.79	(1)	33	(a)	0.3	0.2	0.1	0.1
Barium	34 / 34	106	62.1	0.7	(3)	NA		152	89	## M	
Beryllium	7 / 34	1.6	0.56	NA NA		NA		***	. **		
Chromium	34 / 34	23.3	19.8	43.4	(1)	111	(a)	0.5	0.5	0.2	0.2
Cobalt	34 / 34	24.7	13.5	50	(1)	NA	***************************************	0.5	0.3		
Copper	34 / 34	489	300	31.6	(1)	149	(a)	15	9.5	3.3	2.0
Manganese	34 / 34	655	442	630	(3)	1100	(c)	1.0	0.7	0.6	0.4
Molybdenum	29 / 30	2.3	1.22	NA NA	and contribution of the co	NA ·		mim	***************************************		## ##
Selenium	29 / 33	2.8	2.34	0.29	(3)	NA	***************************************	9.5	8.1		
Strontium	6/6	212	194	49.0	(3)	NA		4.3	4.0		***************************************
Vanadium	34 / 35	34.3	23.5	50	(3)	NA	***************************************	0.7	0.5	. ==	(m) (m)
Zinc	34 / 34	64.3	57.4	121	(1)	459	(a)	0.5	0.5	0.1	0.1

COPECs - Chemicals of Potential Ecological Concern

mg/kg = milligrams per kilogram

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Hazard Quotients for Sediment COPECs in the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				No Effect		Effect			,		
	Frequency of			Sediment [*]		Sediment		No Eff	ect HQ	Effec	t HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Total (mg/kg)											
Arsenic	8 / 12	3.0	2.2	9.79	(1)	33	(a)	0.3	0.2	0.1	0.1
Barium	11 / 11	148	64.7	0.7	(3)	NA		212	92	***	***
Beryllium	3 / 11	2	0.60	NA NA	- minimiser better den den den segmenten en en	NA		W DE			
Chromium	11 / 11	52.0	23.1	43.4	(1)	111	(a)	1.2	0.5	0.5	0.2
Cobalt	11 / 11	6.0	5.0	50	(1)	NA		0.1	0.1	**	
Copper	11 / 11	14.6	10.5	31.6	(1)	149	(a)	0.5	0.3	0.1	0.1
Manganese	11 / 11	599	442	630	(3)	1100	(c)	0.95	0.7	0.5	0.4
Molybdenum	5/7	0.28	0.55	NA		NA					
Selenium	1/5	0.30	0.70	0.29	(3)	NA		1.0	2.4		Not took
Strontium	2/2	257	230	49.0	(3)	NA	91. 3 - C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5.2	4.7	W #	ME 100
Vanadium	11 / 11	29.7	21.5	50	(3)	NA.		0.6	0.4	****	***************************************
Zinc	11 / 11	40.1	28.8	121	(1)	459	(a)	0.3	0.2	0.1	0.1

mg/kg = milligrams per kilogram

NA - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

- 1, USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4.
- 3. Buchman, M.F. 1999, NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4, Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aguatic sediment guality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Created by: RAR 4/18/2008 QC'd by: EK 5/15/2008

Attachment 7.15 Incremental Risk for Sediments in School House Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

No Effect **Effect Hazard Quotient** Incremental Risk* **Hazard Quotient** Incremental Risk* Site-CTE REF-RME REF-CTE Site-CTE | REF-RME | REF-CTE COPEC Site-RME RME CTE Site-RME **RME** CTE Metals 0.3 0.2 0.3 0.2 0.1 Arsenic <1 <1 0.1 0.1 0.1 <1 <1 89 92 Barium 152 212 <1 <1 Beryllium Chromium 0.5 0.5 1.2 0.5 <1 0.2 0.2 0.5 0.2 <1 <1 <1 Cobalt 0.5 0.3 0.1 0.1 <1 <1 15 9.5 0.5 0.3 15 Copper 9.2 3.3 2.0 0.1 0.1 3.2 1.9 1 0.7 0.95 0.7 0.6 0.5 Manganese <1 <1 0.4 0.4 <1 <1 Molybdenum -----Selenium 9.5 8.1 1.0 2.4 8.5 5.6 5.2 Strontium 4.3 4.0 4.7 <1 <1 ------

<1

<1

0.1

0.1

0.1

0.1

<1

<1

<1

<1

COPECs - Chemicals of Potential Ecological Concern

0.7

0.5

0.6

0.3

0.4

0.2

0.5

0.5

Vanadium

Zinc

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

^{-- -} Not Available

Attachment 7.16 Hazard Quotients for Sediment COPECs in the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				No Effect		Effect				<u> </u>	
	Frequency of			Sediment		Sediment		No Eff	ect HQ	Effec	t HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Total (mg/kg)											
Barium	17 / 17	90.0	46.3	0.7	(3)	NA		129	66		
Beryllium	4 / 17	1.8	0.40	NA		NA		W 88	***		#
Copper	17 / 17	127	76.3	31.6	(1)	149	(a)	4.0	2.4	0.9	0.5
Manganese	17 / 17	475	355	630	(3)	1100	(c)	8.0	0.6	0.4	0,3
Molybdenum	8 / 10	1.1	0.92	NA ·		NA		==	***************************************		***************************************
Selenium	3 / 17	0.81	1.6	0.29	(3)	NA	AND REAL PROPERTY OF THE PROPE	2.8	5.6	***	####
Silver	2 / 17	0.57	0.72	0.5	(1)	3.7	(c)	1.1	1.4	0.2	0.2
Strontium	1/1	193	193	49.0	(3)	NA		3.9	3.9	**	**
Thallium	0 / 16	13.8	4.5	NA	~	NA			200 Miles	•	*****
Zinc	17 / 17	58.7	44	121	(1)	459	(a)	0.5	0.4	0.1	0.1

mg/kg = milligrams per kilogram

NA - Not Available

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

EBOR - East Branch of the Ompompanoosuc River

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory. ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Hazard Quotients for Sediment COPECs in the Upstream Reference Section of the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	No Effect		Effect	•				
	Frequency of			Sediment		Sediment		No Eff	ect HQ	Effec	t HQ
COPECs	Detection	RME	CTE	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Total (mg/kg)											
Barium	3 / 3	187	79.4	0.7	(3)	NA		267	113		
Beryllium	2/3	1.6	0.75	NA		NA		W	***	***************************************	No es
Copper	2 / 3	4.5	3.2	31.6	(1)	149	(a)	0.1	0.1	0.03	0.02
Manganese	.3 / 3	475	278	630	(3)	1100	(d)	0.8	0.4	0.4	0.3
Molybdenum	1/1	0.16	0.16	NA		NA			***	M 70	ME IN
Selenium	0/3	5.0	1.8	0.29	(3)	NA		17	6.2	m m	600 800
Silver	1/3	0.28	0.76	0.5	(1)	3.7	(c)	0.6	1.5	0.1	0.2
Strontium	1/1	198	198	49.0	(3)	NA		4.0	4.0	**	No. 100
Thallium	0 / 2	17.5	9.1	NA		NA	***************************************	***************************************	**	301.000	
Zinc	3 / 3	33.0	22.2	121	(1)	459	(a)	0.3	0.2	0.1	0.05

mg/kg = milligrams per kilogram

NA - Not Available

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

EBOR - East Branch of the Ompompanoosuc River

- 1. USEPA. 2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 2. Jones, D.S., G.W. Suter and R.N. Hull. 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision.

Oak Ridge National Laboratory. ES/ER/TM-95/R4.

- 3. Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, National Oceanic and Atmospheric Administration. 12 pp.
- 4. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.
- a. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- b. Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- c. Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Attachment 7.18 Incremental Risk for Sediments in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			No E	ffect					Eff	ect		•
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremer	ıtal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals		120 66 267 113										
Barium	129	66	267	113	<1	<1		100 100				
Beryllium	** W	en an		20 10				, M	***			
Copper	4.0	2.4	0.1	0.1	3.9	2.3	0.9	0.5	0.03	0.02	~ T	<1
Manganese	0.8	0.6	0.8	0.4	<1	<1	0.4	0.3	0.4	0.3	<1	<1
Molybdenum	==	100 5E2	***	and and							_	
Selenium	2.8	5.6	17	6.2	<1	<1		## ##	***	==	-	
Silver	1.1	1.4	0.6	1.5	<1	<1	0.2	0.2	0.1	0.2	<1	<1
Strontium	3.9	3.9	4.0	4.0	<1	<1	And the state of t	## ##		500 MW		
Thallium				944 (Pd)			***************************************	200 100				
Zinc	0.5	0.4	0.3	0.2	<1	<1	0.1	0.1	0.1	0.05	<1	<1

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

^{-- -} Not Available

Attachment 7.19 Hazard Quotients for Pore Water COPECs in Main Stem of Ely Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface Water		Chronic Surface	. [Acut	e HQ	Chron	nic HQ
COPECs	Detection	Maximum	Tendency	Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)							4,1				
Aluminum	6/6	456	95.1	750	(a)	87	(1)	0.6	0.1	5.2	1.1
Arsenic	0/6	100	100	340	(a)	150	(1)	0.3	0.3	0.7	0.7
Beryllium	0/6	5.0	5.0	. 35	(c)	3.6	(4)	0.1	0.1	1.4	1.4
Cadmium	6/6	2.0	0.45	2	(a)	0.25	(1)	1.0	0.2	7.8	1.8
Cobalt	6/6	95.0	. 32.5	1500	(c)	24	- (4)	0.1	0.0	4.0	1.4
Copper	6/6	131	45.6	13.0	(a)	9	(1)	10	3.5	15	5.1
Manganese	6/6	6590	1782	2300	(c)	120	(6)	3	0.8	55	15
Mercury	0/2	2.5	2.5	1.4	(a)	0.77	(1)	1.8	1.8	3.2	3.2
Strontium	6/6	212	97.5	15000	(c)	1500	(6)	0.01	0.01	0.1	0.1
Zinc	6/6	126	31.6	120	(a)	120	(1)	1.1	0.3	1.1	0.3

ug/L. - micorgrams per liter

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao, 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA, 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont, 2006, Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Hazard Quotients for Pore Water COPECs in the Upstream Reference Section of the Main Stem of Ely Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface		Chronic Surface		Acut	e HQ	Chro	nic HQ
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)	•										-
Aluminum	3 / 3	88.8	35.1	750	(a)	87	(1)	0.1	0.05	1.0	0.4
Arsenic	0/3	100	100	340	(a)	150	(1)	0.3	0.29	0.7	0.7
Beryllium	0/3	5.0	5.0	35	(c)	3.6	(4)	0.1	0.14	1.4	1.4
Cadmium	2/3	0.73	2.2	2	(a)	0.25	(1)	0.4	1.1	2.9	8.6
Cobalt	2/3	0.55	2.0	1500	(c)	24	(4)	0.0	0.00	0.0	0.1
Copper	3 / 3	6.2	3.6	13.0	(a)	9	(1)	0.5	0.28	0.7	0.4
Manganese	3 / 3	3000	1019	2300 -	(c)	120	(6)	1.3	0.44	25	8.5
Mercury	0 / 1	2.5	2.5	1.4	(a)	0.77	(1)	1.8	1.8	3.2	3.2
Strontium	3 / 3	258	133	15000	(c)	1500	(6)	0.0	0.01	0.2	0.1
Zinc	3/3	12.8	5.6	120	(a)	120	(1)	0.1	0.05	0.1	0.0

ug/L - micorgrams per liter

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1, U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2, State of Vermont, 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont, 2006. Vermont Water Quality Standards.
- c, Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.21 Incremental Risk for the Pore Water in the Main Stem of Ely Brook

Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

											***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Acute S	cenario					Chronic	Scenario		
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremer	ıtal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals								4				
Aluminum	0.6	0.1	0.1	0.05	<1	<1	5.2	1.1	1.0	0.4	4.2	<1
Arsenic	0.3	0.3	0.3	0.3	<1	<1	0.7	0.7	0.7	0.7	<1	<1
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.4	1.4	1.4	<1	<1
Cadmium	1.0	0.2	0.4	1.1	<1	<1	7.8	1.8	2.9	8.6	4.9	<1
Cobalt	0.1	0.02	0.0004	0.001	<1	<1	4.0	1.4	0.02	0.1	3.9	1.3
Copper	10	3.5	0.5	0.3	10	3.2	15	5.1	0.7	0.4	14	4.7
Manganese	3	1	1	0.4	1.6	<1	55	15	25	8.5	30	6.4
Mercury	1.8	1.8	1.8	1.8	<1	<1	3.2	3.2	3.2	3.2	<1	<1
Strontium	0.01	0.01	0.02	0.01	<1	<1	0.1	0.1	0.2	0.1	<1	<1
Zinc	1.1	0.3	0.1	0.05	<1	<1	1.1	0.3	0.1	0.05	<1	<1

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Hazard Quotients for Pore Water COPECs in School House Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface		Chronic Surface		Acut	te HQ	Chror	nic HQ
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolv	ed (ug/L)		-								
Aluminum .	9 / 9	202	44.0	750	(a)	87	(1)	0.3	0.1	2.3	0.5
Arsenic	0/9	100	100	340	(a)	150	(1)	0.3	0.3	0.7	0.7
Beryllium	0/9	5.0	5.0	35	(c)	3.6	(4)	0.1	0.1	1.4	1.4
Cadmium	9 / 9	0.30	0.11	2	(a)	0.25	(1)	0.2	0.1	1.2	0.4
Copper	9 / 9	25.0	8.8	13.0	(a)	9	(1)	1.9	0.7	2.8	0.98
Manganese	9 / 9	2030	589.1	2300	(c)	120	(6)	0.9	0.3	17	4.9
Selenium	8 / 9	· 7.4	4.3	20	(b)	5.0	(1)	0.4	0.2	1.5	0.9
Thallium	7/9	470	266.3	110	(c)	40	(5)	4.3	2.4	12	6.7
Zinc	2 / 9	149	19.1	120	(a)	120	(1)	1.2	0.2	1.2	0.2

ug/L - micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3, U.S. EPA, 1996, ECO Update: Ecotox Thresholds, EPA 540/F-95/038, January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Hazard Quotients for Pore Water COPECs in the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface Water		Chronic Surface		Acut	e HQ	Chro	nic HQ
COPECs	Detection	Maximum	Tendency	Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolve	ed (ug/L)										
Aluminum	3 / 3	98.0	40.1	750	(a)	87	(1)	0.1	0.05	1.1	0.5
Arsenic	0/3	100	100	340	(a)	150	(1)	0.3	0.3	0.7	0.7
Beryllium	0/3	5.0	5.0	35	(c)	3.6	(4)	0.1	0.1	1.4	1.4
Cadmium	2 / 5	0.02	0.84	2	(a)	0.25	(1)	0.01	0.4	0.1	3.4
Copper	2/5	0.58	1.9	13.0	(a)	9	(1)	0.04	0.1	0.1	0.2
Manganese	3 / 3	4000	1336	2300	(c)	120	(6)	1.7	0.6	33	11
Selenium	0/3	0.50	0.50	20	(b)	5	(1)	0.03	0.03	0.1	0.1
Thallium	1 / 3	0.20	0.10	110	(c)	40	(5)	0.002	0.001	0.01	0.003
Zinc	3 / 5	2.2	1.4	120.0	(a)	120	(1)	0.02	0.01	0.02	0.01

ug/L - micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.24 Incremental Risk for the Pore Water in School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

				·								
٠.			Acute	Scenario					Chronic	Scenario		
		Hazar	d Quotient		Incremen	ntal Risk*		Hazar	d Quotient		Incremen	tal Risk*
COPECs	RME	CTE	REF-RME	REF-CTE	RME	CTE	RME	CTE	REF-RME	REF-CTE	RME	CTE
Metals		,										
Aluminum	0.3	0.1	0.1	0.1	<1	<1	2.3	0.5	1.1	0.5	1.2	<1
Arsenic	0.3	0.3	0.3	0.3	<1	<1	0.7	0.7	0.7	0.7	<1	<1
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.4	1.4	1.4	<1	<1
Cadmium	0.2	0.1	0.01	0.4	<1	<1	1.2	0.4	0.10	3.4	1.1	<1
Copper	1.9	0.7	0.04	0.1	1.9	<1	2.8	1.0	0.06	0.2	2.7	<1
Manganese	0.9	0.3	1.7	0.6	<1	<1	17	4.9	33	11	<1	<1
Selenium	0.4	0.2	0.03	0.03	<1	<1	1.5	0.9	0.1	0.1	1.4	<1
Thallium	4.3	2.4	0.002	0.001	4.3	2.4	12	6.7	0.005	0.003	12	6.7
Zinc	1.2	0.2	0.02	0.01	1.2	<1	1.2	0.2	0.02	0.01	1.2	<1

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.25 Hazard Quotients for Pore Water COPECs in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface Water		Chronic Surface		Acut	e HQ	Chror	nic HQ
COPECs	Detection	Maximum	Tendency	Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolve	ed (ug/L)						-				
Arsenic	0/3	100	100	340	(a)	150	(1)	0.3	0.3	0.7	0.7
Beryllium	0/3	5.0	5.0	35	(c)	3.6	(4)	0.1	0.1	1.4	1.4
Manganese	3 / 3	3700	1918	2300	(c)	120	(6)	1.6	0.8	31	16
Mercury	0 / 1	2.5	2.5	1.4	(a)	0.77	(1)	1.8	1.8	3.2	3.2

ug/L - micorgrams per liter

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Hazard Quotients for Pore Water in the Upstream Reference Section of the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface Water		Chronic Surface			e HQ		nic HQ
COPECs	Detection	Maximum	Tendency	Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolv	ed (ug/L)										
Arsenic	0/3	100	100	340	(a)	150	(1)	0.3	0.3	0.7	0.7
Beryllium	0 / 3	5.0	5.0	35	(c) .	3.6	(4)	0.1	0.1	1.4	1.4
Manganese	2/3	6830	2347 .	2300	(c)	120	(6)	3.0	1.0	57	20
Mercury	0 / 1	2.5	2.5	1.4	(a)	0.77	(1)	1.8	1.8	3.2	3.2

ug/L - micrograms per liter

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA,2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.27 Incremental Risk for Pore Water in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

				Scenario						Scenario		
		Hazard	Quotient		Increme	ntal Risk*		Hazard	l Quotient		Incremen	tal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Arsenic	0.3	0.3	0.3	0.3	<1	<1	0.7	0.7	0.7	0.7	<1	<1
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.4	1.4	1.4	<1	<1
Manganese	1.6	0.8	3.0	1.0	<1	<1	31	16	57	20	<1	<1
Mercury	1.8	1.8	1.8	1.8	<1	<1	3.2	3.2	3.2	3.2	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.28 Calculation of AVS-SEM Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

																											Acid '	Volatile				$\overline{}$
				Sampling	(Cadmiun	า		Copper			Lead			Mercury			Nickel			Silver			Zinc		SEM	Su	lfide		AVS		SEM-AVS
Site Name	Sample Name	Exposure Area	Units	Date	conc	RL	qual	conc	RL	qual	conc	RL	qual	conc	RL	qual	conc	RL	qual	conc	RL	qual	conc	RL	qual				conc	RL	qual	í
EB-210M	ELY-SED-10C	Ely Brook	umole/g	11/3/2004	0.002	0.002	J	3.0			0.03						1.0			0.01			0.10			4.1			ND	0.06		131
EB-30M	ELY-SED-09C	Ely Brook	umole/g	11/3/2004	0.002	0.002	J	3.6			0.04						0.01	0.02	J	0.01			0.18			3.9			ND	0.07		113
EB-405M		Ely Brook	umole/g	11/3/2004	0.003			5.2			0.03						0.33			0.01			0.14			5.7			ND	0.07		176
EB-440M	ELY-SED-11C	Ely Brook	umole/g	11/3/2004	0.002	0.002	J	2.9			0.03						1.4			0.01			0.10			4.4			ND	0.06		139
EB-530M	ELY-SED-12C	Ely Brook	umole/g	11/1/2004	0.003			1.5			0.02						0.26			0.01	0.006	J	0.06			1.9			ND	0.06		59
EB-560M	ELY-SED-13C	Ely Brook	umole/g	11/1/2004	0.003			14.2			0.02						1.2			0.003	0.006	J	0.53			16.0			ND	0.06		506
EB-600M	06ELY03	Ely Brook	umole/g	8/23/2006	0.004		В	13.8			0.02			ND	0.0008		0.06		В				0.65			14.5	ND	10.1	ND	0.61		48
EB-770M	06ELY02	Ely Brook	umole/g	8/23/2006	0.001		В	5.4			0.01		В	ND	0.0008		0.04		В				0.30			5.7	ND	10.5	ND	0.64		18.0
EB-90M	06ELY04	Ely Brook	umole/g	8/23/2006	ND	0.001		1.1			0.02			ND	0.0008		ND	0.01					0.05		В	1.2	ND	10.2	ND	0.63		3.7
SB-1360M	06ELY07	School House Brook	umole/g	8/23/2006	ND	0.001		1.0			0.01		В	ND	0.0008		0.04		В				0.30			1.4	ND	10.3	ND	0.65		4.2
SB-1360M	ELY-SED-01C	School House Brook	umole/g	11/3/2004	0.002	0.002	J	2.1	0.005	J	0.01			IND			0.07	0.02	J	0.0004	0.006	J	0.66			2.9			0.33	0.06	J	8.6
SB-140M	06ELY08	School House Brook	umole/g	8/22/2006	ND	0.001		1.2			0.02		В	ND	0.0009		0.04		В				0.35			1.6	ND	10.8	ND	0.66		4.9
SB-20M	ELY-SED-27C	School House Brook	umole/g	11/4/2004	0.002			2.5	0.005	J	0.02			140			0.08	0.02	J	0.0004	0.006	J	0.67			3.3			0.17	0.06	J	19
SB-2400M	06ELY06	School House Brook	umole/g	8/22/2006	ND	0.001		1.0			0.01		В	ND	0.0008		0.04		В				0.30			1.3	ND	10.3	ND	0.64		4.2
SB-2900M	ELY-SED-02C	School House Brook	umole/g	11/4/2004	0.002	0.002	J	2.0	0.005	J	0.01			140			0.07	0.02	J	0.0005	0.006	J	0.44			2.5			ND	0.06	UJ	83
SB-2920M	ELY-SED-03C	School House Brook	umole/g	11/4/2004	0.002	0.002	J	2.3	0.005	J	0.01						0.53	0.02	J	0.0004	0.005	J	0.44			3.3			ND	0.06	UJ	109
SB-3020M	ELY-SED-04C	School House Brook	umole/g	11/4/2004	0.001	0.002	J	1.6	0.004	J	0.01						0.05	0.02	J	0.0005	0.005	J	0.34			2.0			ND	0.06	UJ	67
SB-3125M	ELY-SED-05C	School House Brook	umole/g	11/4/2004	0.001	0.002	J	1.8	0.005	J	0.01						0.05	0.02	J	0.0004	0.005	J	0.32			2.1			ND	0.06	UJ	74
SB-3250M	ELY-SED-06C	School House Brook	umole/g	11/4/2004	0.002			3.0	0.004	J	0.02						1.1	0.02	J	0.0008	0.005	J	0.55			4.7			0.11	0.06	J	42
OR-11850M	SED-03-35R	EBOR	umole/g	7/19/2000	0.003			1.0			0.03						0.13						0.56			1.7			ND	0.18		19.1
OR-23200M	06ELY10	EBOR	umole/g	8/22/2006	ND	0.001		0.27			0.01		В	ND	0.0009		0.03		В				0.14			0.44	ND	11.5	ND	0.68	1	1.3
OR-23630M	ELY-SED-28C	EBOR	umole/g	11/4/2004	0.0007	0.002	J	0.52	0.005	J	0.02			IVD			0.05	0.02	J	ND	0.005		0.27			0.85			0.11	0.06	J	7.8
OR-23650M	ELY-SED-26C	EBOR	umole/g	11/4/2004	0.0004	0.002	J	0.08	0.005	J	0.01						0.13	0.02	J	ND	0.006		0.15			0.37			0.28	0.06	J	1.3
OR-8350M	SED-04-45R	EBOR	umole/g	10/2/2000	ND	0.004		0.26			ND	0.04					ND	0.07					0.25			0.51			0.25			2.0

umole/g - micromile per gram

Note: Most AVS concentrations fell below their RLs. In those situations, the SEM/AVS was obtained by dividing the SEM concentration by one half of the RL.

Note 2: Only on sample collected for SEM and AVS analysis was analyzed for total organic carbon (TOC).

EBOR - East Branch of the Ompompanoosuc River

SEM - Simultaneously Extracted Metals

AVS - Acid Volatile Sulfide

Conc - concentration

RL - Reporting Limit

Qual - qualifier ND - Not Detected

B - analyte is associated with blank contamination

J - estimated value

Created by: RAR 7/1/2008 QC'd by: SJP 7/2/2008

Attachment 7.29: Weight-of-Evidence Integration for Benthic Invertebrates Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 1:

Maintain a stable and healthy benthic invertebrate community

Are the COPEC levels in sediment sufficiently high to cause biologically-significant changes or impair the function of the benthic community in the on-Site ponds and the three streams affected by Ely Mine?

Measurement Endpoints

- 1.A: Compare COPEC levels in sediment samples to published sediment benchmarks
- 1.B: Compare dissolved COPEC levels in pore water samples to published surface water benchmarks
- 1.C: Estimate the bioavailability of divalent metals in sediment based on SEM/AVS
- 1.D: Measure survival in *H. azteca* and *C. tentans* exposed for 96 hours to sediment pore water samples
- 1.E: Measure survival and growth in *H. azteca* and *C. tentans* exposed for 10 days and 28 days, respectively, to bulk sediment samples
- 1.F: Evaluate the structure and function of the benthic invertebrate community

Weight-of-Evidence Integration

Pond 2 on the east branch of Ely Brook		WEIGI	HT OF EVIDI	ENCE	
		Low -		Medium -	·
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High					
Yes/Low					
Undeterminate		·			-
No Harm	1.A				

Pond 3 on the east branch of Ely Brook		WEIG	HT OF EVID	ENCE	
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High
Yes/High					
Yes/Low	1.A				
Undeterminate					
No Harm					

Pond 4 on the east branch of Ely Brook		WEIGI	HT OF EVIDI	ENCE	
		Low -		Medium -	
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High					•
Yes/Low	1.A				
Undeterminate					
No Harm					

Pond 5 on the east branch of Ely Brook		WEIGI	HT OF EVID	ENCE	
		Low -		Medium -	•
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High	1.A				
Yes/Low					
. Undeterminate					-
No Harm					

Attachment 7.29: Weight-of-Evidence Integration for Benthic Invertebrates Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

The main stem of Ely Brook		WEIG	HT OF EVÍD	ENCE	,
		Low -		Medium -	
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High	1.A; 1.B; 1C		1.D	1.E	1.F
Yes/Low		•			
Undeterminate					-
No Harm	-				

Schoolhouse Brook	-	WEIG	HT OF EVID	ENCE	
		Low -		Medium -	
HARM/MAGNITUI	DE Low	Medium	Medium	High	High
Yes/H	gh 1.B; 1C			1.E	1.F
Yes/L	ow 1.A				
Undetermina	ate				
No Ha	rm	·	1.D		

The EBOR		WEIGI	T OF EVID	ENCE	
		Low -		Medium -	
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High					
Yes/Low	1.C				
Undeterminate					
No Harm	1.A; 1.B	·	1.D	1.E	1.F

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the benthic invertebrate community is discussed in Section 7 of the BERA

Hazard Quotients for Surface Water COPECs in Pond 2

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface Water		Chronic Surface Water		Acut	e HQ	Chron	ic HQ
COPECs	Detection	Maximum	Tendency	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											
Beryllium	0 / 6	5.0	5.0	35	(c)	3.6	(4)	0.1	0.1	1.4	1.4
Copper	6/6	41.8	10.6	13.0	(a)	9	(1)	3.2	0.8	4.6	1.2
Manganese	6/6	1400	533	2300	(c)	120	(6)	0.6	0.2	12	4.4
Silver	3 / 6	0.49	6.7	3.2	(a)	0.32	(1)	0.2	2.1	1.5	21
Zinc	6/6	171	66.8	120	(a)	120	(1)	1.4	0.6	1.4	0.6

COPECs - Chemicals of Potential Ecological Concern

ug/L - micrograms per liter

RME - Reasonable Maximum Exposure

CTE- Central Tendency Exposure

HQ - Hazard Quotient

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Created by: RAR 4/18/2008 QC'd: EK 5/15/2008

Hazard Quotients for Surface Water COPECs in Reference Pond (Pond 1)

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		Reasonable	Central	Acute Surface Water		Chronic Surface Water		Acu	te HQ	Chron	ic HQ
COPECs	Frequency of Detection	Maximum	Tendency	Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											
Arsenic	1 / 8	0.13	20.8	340	(a)	87	(1)	0.0004	0.06	0.001	0.24
Beryllium	0 / 8	5.0	4,1	35	(c)	3.6	(4)	0.1	0.1	1.4	1.1
Cadmium	0 / 8	22.9	17.0	2	(a)	0.25	(1)	11	8.5	91	68
Chromium	1 / 8	0.60	38.7	16	(a)	11	(1)	0.04	2.4	0.05	3.5
Cobalt	2 / 8	0.06	8.26	1500	(c)	24	(4)	0.00004	0.006	0.003	0.3
Copper	2 / 8	4.6	39.2	13.0	(a)	9.0	(1)	0.4	3.0	0.5	4.4
Lead	2 / 8	0.75	82.3	65	(a)	2.5	(1)	0.01	1.3	0.3	33
Manganese	2 / 8	10.1	9.9	2300	(c)	120	(6)	0.004	0.004	0.1	0.1
Selenium	0 / 8	22.5	11.3	20.0	(b)	5	(1)	1.1	0.6	4.5	2.3
Silver	0/8	150	97.8	3.2	(a)	. 0.32	(1)	47	31	469	306
Thallium	0/8	22.5	11.2	110	(c)	40	(5)	0.2	0.1	0.6	0.3
Zinc	5 / 8	199	92.8	120	(a)	120	(1)	1.7	0.8	1.7	0.8

COPECs - Chemicals of Potential Ecological Concern

ug/L - micrograms per liter

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA,2003. Region V Ecological Screening Levels, www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.32 Incremental Risk for Surface Water in Pond 2 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			Acuto	Scenario					Chronic	Conorio	igener en	
·		Hazard	Quotient	Scenario	Incremen	ntal Risk*	Chronic Scenario k* Hazard Quotient Inc					tal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals	·					100						
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.4	1.4	1.1	<1	<1
Copper	3.2	0.8	0.4	3.0	2.9	<1	4.6	1.2	0.5	4.4	4.1	<1
Manganese	0.6	0.2	0.004	0.004	<1	<1	11.7	4.4	0.08	0.08	12	4.4
Silver	0.2	2.1	47	31	<1	<1	1.5	21	469	306	<1	<1
Zinc	1.4	0.6	1.7	0.8	<1	<1	1.4	0.6	1.7	8.0	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.33 Hazard Quotients for Surface Water COPECs in Pond 3 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

		Reasonable	Central	Acute Surface		Chronic Surface		Acut	e HQ	Chron	nic HQ
COPECs	Frequency of Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											
Arsenic	0 / 1	100	100	340	(a)	150	(1)	0.3	0.3	0.7	0.7
Beryllium	0 / 1	5.0	5.0	35	(c)	3.6	(4)	0.1	0.1	1.4	1.4
Cadmium	0/1	6.5	6.5	2	(a)	0	(1)	3	3	26	26
Chromium	0 / 1	14.4	14.4	16	(a)	11	(1)	0.9	0.9	1.3	1.3
Manganese	1/1	444	444	2300	(c)	120	(6)	0.2	0.2	3.7	3.7
Silver	1/1	46.2	46.2	3.2	(a)	0.32	(1)	14	14	144	144

COPECs - Chemicals of Potential Ecological Concern

ug/L - micrograms per liter

RME - Reasonable Maximum Exposure

CT - Central Tendency Exposure

HQ - Hazard Quotient

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2, State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision.

ES/ER/TM-96/R2. Oak Ridge National Laboratory.

- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.34 Incremental Risk for Surface Water from Pond 3 Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

		Acute Scenario							Chronic	Scenario		
		Hazard	Quotient		Increment	tal Risk*		Hazard	Quotient		Increme	ntal Risk*
COPEC	Site-RME	te-RME Site-CTE REF-RME REF-CTE				CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals										·		
Arsenic	0.3	0.3	0.0004	0.1	<1	<1	0.7	0.7	0.001	0.2	<1	<1
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.4	1.4	1.1	<1	<1
Cadmium	3.3	3.3	11	8	<1	<1	26	26	91	68	<1	. <1
Chromium	0.9	0.9	0.04	2.4	<1	<1	1.3	1.3	0.05	3.5	1.3	<1
Manganese	0.2	0.2	0.004	0.004	<1	<1	3.7	3.7	0.08	0.08	3.6	3.6
Silver	14	14	47	31	<1	<1	144	144	469	306	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.35 Hazard Quotients for Surface Water COPECs in Pond 4 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

		Reasonable	Central	Acute Surface Water		Chronic Surface		Acut	e HQ	Chro	nic HQ
COPECs	Frequency of Detection	Maximum	Tendency	Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											
Arsenic	0 / 8	100	20.8	340	(a)	150	(1)	0.3	0.1	0.7	0.1
Beryllium	0/9	5.0	3.6	35	(c)	3.6	(4)	0.1	0.1	1.4	1.0
Copper	8 / 10	64.0	29.6	13.0	(a)	9	(1)	4.9	2.3	7.1	3.3
Manganese	10 / 10	212	98.3	2300	(c)	120	(6)	0.1	0.0	1.8	0.82
Selenium	0 / 10	22.5	9.1	20.0	(b)	5	(1)	1.1	0.5	4.5	1.8
Silver	0 / 10	109	48.6	3.2	(a)	0.32	(1)	34	15	341	152
Thallium	0 / 10	22.5	9.0	110	(c)	40	(5)	0.2	0.1	0.6	0.2
Zinc	8 / 10	186	89.9	120	(a)	120	(1)	1.5	0.7	1.5	0.7

COPECs - Chemicals of Potential Ecological Concern

ug/L - micrograms per liter

RME - Reasonable Maximum Exposure

CT - Central Tendency Exposure

HQ - Hazard Quotient

- 1. U.S. EPA, 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA, 1996. ECO Update: Ecotox Thresholds, EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

, ,

- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.36 Incremental Risk for Surface Water in Pond 4 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			Acute	Scenario					Chronic	Scenario		
		Hazard	Quotient		Incremen	ıtal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Arsenic	0.3	0.1	0.0004	0.1	<1	<1	0.7	0.1	0.001	0.2	<1	<1
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.0	1.4	1.1	<1	<1
Copper	4.9	2.3	0.4	3.0	4.6	<1	7.1	3.3	0.5	4.4	6.6	<1
Manganese	0.1	0.04	0.004	0.004	<1	<1	1.8	0.82	0.08	0.08	1.7	<1
Selenium	1.1	0.5	1.1	0.6	<1	<1	4.5	1.8	4.5	2.3	<1	<1
Silver	34	15	47	31	<1	<1	. 341	152	469	306	<1	<1
Thallium	0.2	0.1	0.2	0.1	<1	<1	0.6	0.2	0.6	0.3	<1	<1
Zinc	1.5	0.7	1.7	0.8	<1	<1	1.5	0.7	1.7	0.8	<1	<1

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.37 Hazard Quotients for Surface Water COPECs in Pond 5 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

		Reasonable	Central	Acute Surface		Chronic Surface Water		Acute	HQ	Chror	nic HQ
COPECs	Frequency of Detection	Maximum	Tendency	Water Benchmark	Source	Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											
Arsenic	0 / 4	100	33.3	340	(a)	150	(1)	0.3	0.1	0.7	0.2
Beryllium	0 / 4	5.0	4.6	35	(c)	3.6	(4)	0.1	0.1	1.4	1.3
Cadmium	1 / 4	1.9	11.1	2	(a)	0.25	(1)	1.0	5.6	7.7	44.5
Chromium	0 / 4	35.3	26.1	16	(a)	11	(1)	2.2	1.6	3.2	2.4
Cobalt	1 / 4	24,0	14.3	1500	(c)	24	(4)	0.02	0.01	1.0	0.6
Copper	4 / 4	670	446	13.0	(a)	9	(1)	52	34	74	50
Lead	0 / 4	74.3	61.1	65	(a)	2.5	(1)	1.1	0.9	29.7	24.4
Manganese	4/4	425	194	2300	(c)	120	(6)	0.2	0.1	3.5	1.6
Selenium	0 / 4	11.0	8.4	20.0	(b)	5	(1)	0.6	0.4	2.2	1.7
Silver	0 / 4	63.7	41.0	3.2	(a)	0.32	(1)	20	13	199	128
Thallium	0 / 4	22.5	11:1	110	(c)	40	(5)	0.2	0.1	0.6	0.3
Zinc	4 / 4	376	318	120	(a)	120	(1)	3.1	2.6	3,1	2.6

COPECs - Chemicals of Potential Ecological Concern

ug/L - micrograms per liter

RME - Reasonable Maximum Exposure

CT - Central Tendency Exposure

- 1, U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.38 Incremental Risk for Surface Water from Pond 5 Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

					<u></u>							
			Acute	Scenario					Chronic	Scenario		
		Hazard	Quotient		Incremen	ıtal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPEC	RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Arsenic	0.3	0.1	0.0004	0.1	<1	<1	0.7	0.2	0.001	0.2	<1	<1
Beryllium	0.1	0.1	0.1	0.1	<1	<1	1.4	1.3	1.4	1.1	<1	<1
Cadmium	1.0	5.6	11	8.5	<1	<1	7.7	45	91	68	<1	<1
Chromium	2.2	1.6	0.04	2.4	2.2	<1	3.2	2.4	0.05	3.5	3.2	<1
Cobalt	0.02	0.01	0.00004	0.01	<1	<1	1.0	0.6	0.003	0.3	<1	<1
Copper	52	34	0.4	3.0	51	31	74	50	0.5	4.4	74	45
Lead	1.1	0.9	0.01	1	1	<1	30	24	0.30	33	29.4	<1
Manganese	0.2	0.1	0.004	0.004	<1	<1	3.5	1.6	0.08	0.08	3.5	1.5
Selenium	0.6	0.4	1.1	0.6	<1	<1	2.2	1.7	4.5	2.3	<1	<1
Silver	20	13	47	31	<1	<1	199	128	469	306	<1	<1
Thallium	0.2	0.1	0.2	0.1	<1	<1	0.6	0.3	0.6	0.3	<1	<1
Zinc	3.1	2.6	1.7	0.8	1.5	1.9	3.1	2.6	1.7	0.8	1.5	1.9

COPECs - Chemicals of Potential Ecological Concern

NA - Not Available

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.39: Weight-of-Evidence Integration for Water Column Invertebrates Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 2:

Maintain a stable and healthy water column invertebrate community

Are the COPEC levels in the water column sufficiently high to cause biologically-significant changes or impair the function of the water column invertebrate community in the on-Site ponds?

Measurement Endpoints 2.A: Compare dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks

Weight-of-Evidence Integration

Pond 2 on the east branch of Ely Brook		WEIG	HT OF EVID	ENCE	
		Low -		Medium -	
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High					
Yes/Low	2.A				
Undeterminate			·		
No Harm		·			

Pond 3 on the east branch of Ely Brook	WEIGHT OF EVIDENCE								
		Low -		Medium -					
HARM/MAGNITUDE	Low	Medium	Medium	High	High				
Yes/High									
Yes/Low	2.A								
Undeterminate	·				•				
No Harm									

Pond 4 on the east branch of Ely Brook	WEIGHT OF EVIDENCE							
		Low -		Medium -				
HARM/MAGNITUDE	Low	Medium	Medium	High	High			
Yes/High								
Yes/Low								
Undeterminate	·	-						
No Harm	2.A			•				

Pond 5 on the east branch of Ely Brook	WEIGHT OF EVIDENCE								
		Low -		Medium -					
HARM/MAGNITUDE	Low	Medium	Medium	High	High				
Yes/High	2.A			-					
Yes/Low									
Undeterminate									
No Harm									

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the water column invertebrate community is discussed in Section 7 of the BERA

Attachment 7.40 Hazard Quotients for Surface Water COPECs in Main Stem of Ely Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	al Acute Surface		Chronic Surface		Acute HQ		Chronic HQ	
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											
Aluminum	34 / 34	18580	5964	750	(a)	87	(1)	25	8.0	214	69
Cadmium	33 / 34	5.1	3.3	2	(a)	0.25	(1)	2.5	1.6	20	13
Chromium	30 / 35	5.1	4.4	16	(a)	11	(1)	0.3	0.3	0.5	0.4
Cobalt	35 / 35	333.9	98	1500	(c)	24	(4)	0.2	0.1	14	4
Copper	35 / 35	5530	2532	13	(a)	9.0	(1)	425	195	614	281
Iron	32 / 35	39994	9762	NA NA		1000	(1)	**	==	40	10
Manganese	35 / 35	1034	562	2300	(c)	120	(6)	0.4	0.2	8.6	4.7
Nickel	35 / 35	34.9	29.9	470	(a)	52	(1)	0.1	0.1	0.7	0.6
Silver	7 / 35	0.7	2.09	3.2	(a)	0.32	(1)	0.2	0.7	2.2	6.5
Zinc	34 / 34	588	496	120	(a)	120	(1)	4.9	4.1	4.9	4.1

ug/L - micorgrams per liter

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient NA - Not available

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6, Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a, U.S. EPA, 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicològical benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Hazard Quotients for Surface Water COPECs in the Upstream Reference Section of the Main Stem of Ely Brook Baseline Ecological Risk Assessment

Ely	Copper	Mine	Superfund	Site,	Vershire,	VT

	Frequency of	Reasonable	Central	Acute Surface	-	Chronic Surface		Acute HQ		Chronic HQ	
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolved (ug/L)											····
Aluminum	9 / 10	35.0	15.2	750	(a)	87	(1)	0.05	0.02	0.4	0.2
Cadmium	0 / 10	10.5	5.0	2	(a)	0.25	(1)	5.3	2.5	42	20
Chromium	4 / 10	0.7	10.6	16	(a)	11	(1)	0.05	0.7	0.07	0.96
Cobalt	4 / 10	0.14	2.0	1500	(c)	24	(4)	0.0001	0.001	0.01	0.1
Copper	8 / 10	29.5	7.7	13	(a)	9.0	(1)	2.3	0.6	3.3	0.9
Iron	8 / 10	30.0	17.9	NA		1000	(1)	###		0.03	0.02
Manganese	10 / 10	136.0	23.6	2300	(c)	120	(6)	0.1	0.01	1.1	0.20
Nickel	8 / 10	1.9	5.5	470	(a)	52	(1)	0.004	0.01	0.04	0.1
Silver	2 / 10	0.25	5.9	3.2	(a)	0.32	(1)	0.1	1.9	0.8	18.53
Zinc	10 / 10	77.6	50.0	120	(a)	120	(1)	0.6	0.4	0.6	0.4

ug/L - micorgrams per liter

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA, 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.42 Incremental Risk for Surface Water in the Main Stem of Ely Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site Vershire, VT

								· · · · · · · · · · · · · · · · · · ·							
			Acute	Scenario		Chronic Scenario									
		Hazard	Quotient		Increme	ntal Risk*	•	Hazard	Quotient		Incremental Risk*				
COPEC	Site-RME	Site-RME Site-CTE REF-RME REF-CTE				CTE	Site-RME	Site-RME Site-CTE REF		REF-CTE	RME	CTE			
Metals															
Aluminum	25	8	0.05	0.02	25	8	214	69	0.40	0.17	213	68			
Cadmium	3	2	5.3	3	<1	<1	20	13	42	20	<1	<1			
Chromium	0.3	0.3	0.05	0.7	<1	<1	0.5	0.4	0.07	1.0	<1	<1			
Cobalt	0	0.1	0.0001	0.001	<1	<1 -	14	4	0.01	0.09	14	4.0			
Copper	425	195	2.3	0.6	423	194	614	281	3.3	0.9	611	281			
Iron				•			40	10	0.03	0.02	40	10			
Manganese	0.4	0.2	0.1	0.01	<1	<1	8.6	4.7	1.1	0.20	7.5	4.5			
Nickel	0.1	0.1	0.004	0.01	<1	<1	0.7	0.6	0.04	0.11	<1	V 1			
Silver	0.2	0.7	0.1	2	<1	<1	2.2	6.5	0.8	19	1.4	<1			
Zinc	4.9	4.1	0.6	0.4	4.3	3.7	4.9	4.1	0.6	0.4	4.3	3.7			

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Hazard Quotients for Surface Water COPECs in School House Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

COPECs	Frequency of Detection	Reasonable Maximum	Central Tendency	Acute Surface Water Benchmark	Source	Chronic Surface Water Benchmark	Source	Acute HQ RME CTE		Chronic HO	
Metals, Dissolv	ed (ug/L)										
Aluminum	36 / 36	97.3	87.8	750	(a)	87	(1)	0.1	0.1	1.1	1.0
Barium	36 / 36	87.2	37.9	110	(c)	220	(4)	0.8	0.3	0.4	0.2
Cadmium	24 / 44	0.23	0.58	2	(a)	0.25	(1)	0.1	0.3	0.9	2.3
Copper	9 / 44	112	74	13	(a)	9.0	(1)	8.6	5.7	12.5	8.3
Zinc	35 / 37	69.9	41	120	(a)	120	(1)	0.6	0.3	0.6	0.3

ug/L - micrograms per liter

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3, U.S. EPA, 1996, ECO Update: Ecotox Thresholds, EPA 540/F-95/038, January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont, 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Hazard Quotients for Surface Water COPECs in Upstream Reference Section of School House Brook

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface		Chronic Surface			e HQ	ļ	nic HQ
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolve	ed (ug/L)										
Aluminum	11 / 13	75.5	21.7	750	(a)	87	(1)	0.1	0.03	0.9	0.2
Barium	13 / 13	159	55.5	110	·(c)	220	(4)	1.4	0.5	0.7	0.3
Cadmium	0 / 16	7.8	2.4	2	(a)	0.25	(1)	3.9	1.2	31	9.4
Copper	7 / 16	1.2	4.7	13	(a)	9.0	(1)	0.1	0.4	0.1	0.5
Zinc	12 / 13	86.7	32.4	120	(a)	120	(1)	0.7	0.3	0.7	0.3

ug/L - micrograms per liter

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

COPECs - Chemicals of Potential Ecological Concern

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision.

ES/ER/TM-96/R2. Oak Ridge National Laboratory.

- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.45 Incremental Risk for Surface Water in School House Brook Baseline Ecological Risk Assessment

Ely	Copper	Mine	Superfund	Site,	Vershire,	VT

			Acute	Scenario				-	Chronic	Scenario		
		Hazard	Quotient	- Octobrano	Increme	ntal Risk*		Hazaro	Quotient		Incremen	tal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum	0.1	0.1	0.1	0.03	<1	<1	1.1	1.0	0.9	0.2	<1	<1
Barium	0.8	0.3	1.4	0.5	<1	<1	0.4	0.2	0.7	0.3	<1	<1
Cadmium	0.1	0.3	3.9	1.2	<1	<1	0.9	2.3	31.2	9.4	<1	<1
Copper	8.6	5.7	0.1	0.4	8.5	5.4	12.5	8.3	0.1	0.5	12	7.8
Zinc	0.6	0.3	0.7	0.3	<1	<1	0.6	0.3	0.7	0.3	<1	<1

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF- Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference location.

Attachment 7.46 Hazard Quotients for Surface Water COPECs in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface		Chronic Surface		Acut	e HQ	Chror	nic HQ
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolve	ed (ug/L)										
Aluminum	26 / 29	47.5	39.1	750	(a)	87	(1)	0.1	0.1	0.5	0.4
Barium	29 / 29	282	68.7	110	(c)	220	(4)	2.6	0.6	1.3	0.3
Copper	28 / 29	28.6	14.1	13	(a)	9.0	(1)	2.2	1.1	3.2	1.6
Lead	8 / 29	3.55	20.4	65	(a)	2.5	(1)	0.1	0.3	1.4	8.2
Manganese	29 / 29	40.9	18.1	2300	(c)	120	(6)	0.02	0.01	0.3	0.2
Silver	4 / 29	0.43	3.1	3.2	(a)	0.32	(1)	0.1	1.0	1.4	9.7
Zinc	29 / 29	4731	809	120	(a)	120	(1)	39	6.7	39	6.7

ug/L - micorgrams per liter

EBOR - East Branch of the Opompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3, U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4, USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.
- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Hazard Quotients for Surface Water Column COPECs in the Upstream Reference Section of the EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	Acute Surface		Chronic Surface		Acut	e HQ	Chror	nic HQ
COPECs	Detection	Maximum	Tendency	Water Benchmark	Source	Water Benchmark	Source	RME	CTE	RME	CTE
Metals, Dissolve	ed (ug/L)										
Aluminum	10 / 10	47.1	15.3	750	(a)	87	(1)	0.1	0.02	0.5	0.2
Barium	10 / 10	180	62.6	110	(c)	220	(4)	1.6	0.6	0.8	0.3
Copper	2 / 10	0.96	4.2	13	(a)	9.0	(1)	0.1	0.3	0.1	0.5
Lead	1 / 10	0.09	24.3	65	(a)	2.5	(1)	0.001	0.4	0.04	9.7
Manganese	10 / 10	15.0	10.3	2300	(c)	120	(6)	0.007	0.004	0.1	0.09
Silver	4 / 10	0.08	0.54	3.2	(a)	0.32	(1)	0.03	0.2	0.3	1.7
Zinc	10 / 10	54.6	23	120	(a)	120	(1)	0.5	0.2	0.5	0.2

ug/L - micrograms per liter

EBOR - East Branch of the Opompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

- 1. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- 2. State of Vermont. 2006. Vermont Water Quality Standards.
- 3. U.S. EPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.
- 4. USEPA.2003. Region V Ecological Screening Levels. www.epa.gov/RCRIS-region-5/ca/ESL.pdf
- 5. Buchman, M.F. 1999. Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Coastal Protection Division, NOAA.
- 6. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision.

ES/ER/TM-96/R2. Oak Ridge National Laboratory.

- a. U.S. EPA. 2006. National Recommended Water Quality Criteria: 2006.
- b. State of Vermont. 2006. Vermont Water Quality Standards.
- c. Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory.

Attachment 7.48 Incremental Risk for Surface Water in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			Acuto	Saanaria		`			Chunnia	San and a		
		Hazard	Acute Quotient	Scenario	Incremen	tal Risk*		Hazard	Quotient	<u>Scenario</u>	Incremen	tal Risk*
COPEC	Site-RME	Site-RME Site-CTE REF-RME REF-CT				CTE	Site-RME		REF-RME	REF-CTE	RME	CTE
Metals			-						<u> </u>			
Aluminum	0.1	0.1	0.1	0.02	<1	<1	0.5	0.4	0.5	0.2	<1	<1
Barium	2.6	0.6	1.6	0.6	<1	<1	1.3	0.3	0.8	0.3	<1	<1
Copper	2.2	1.1	0.1	0.3	2.1	<1	3.2	1.6	0.1	0.5	3.1	1.1
Lead	0.1	0.3	0.001	0.4	<1	<1	1.4	8.2	0.04	9.7	1.4	<1
Manganese	0.02	0.01	0.01	0.004	<1	<1	0.3	0.2	0.1	0.09	<1	<1
Silver	0.1	1.0	0.0	0.2	<1	<1	1.4	9.7	0.3	1.7	1.1	8.0
Zinc	39	6.7	0.5	0.2	39	6.5	39	6.7	0.5	0.2	39	6.5

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

Created by: RAR 5/22/2008 QC'd by: EK 5/29/2008

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.49 Hazard Quotients for Brook Trout COPECs in School House Brook Baseline Ecological Risk Assessment

Ely Cooper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	No Effect	Effect	No Eff	ect HQ	Effec	t HQ
COPECs	Detection	Maximum	Tendency	CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, wwt)									
Aluminium	1/1	12.4	12.4	4.2	13.5	3.0	3.0	0.9	0.9
Barium	1/1	0.30	0.30	NA	NA	**	No. of the last	MM 3409	200 EM
Beryllium	0/1	0.005	0.005	NA	NA	## THE	per suc	200 MI	## ##
Cadmium	1/1	0.02	0.02	0.10	0.29	0.2	0.2	0.1	0.1
Chromium	1/1	0.30	0.30	0.58	NA	0.5	0.5	### HOLD	#=
Cobalt	1./1	0.10	0.10	NA	NA		## ##	## ##	-=
Copper	1/1	7.9	7.9	NA	2.4	. ==	***	3.3	3.3
Iron	1/1	46.9	46.9	NA	NA	## ##		100 MB	**************************************
Lead	1/1	0.02	0.02	3.8	4.0	0.01	0.01	0.01	0.01
Manganese	1/1	2.9	2.9	NA	NA	MAX COM.	30 mi	==	
Mercury	1/1	0.003	0.003	NA	0.73			0.004	0.004
Molybdenum	0/1	0.15	0.15	NA	NA	***		****	
Selenium	1/1	0.30	0.30	0.37	0.76	0.8	0.8	0.4	0.4
Thallium	0/1	0.015	0.015	NA	NA				m ==
Vanadium	0 / 1	0.10	0.10	0.02	0.41	5.0	5.0	0.2	0.2
Zinc	1/1	18.8	18.8	16.4	NA	1.1	1.1		. ==

mg/kg, wwt - milligrams per kilogram, wet weight

CBR - Critical Body Residue (mg/kg, wwt)

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

NA - Not available

Hazard Quotients for Brook Trout in the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	No Effect	Effect	No Eff	ect HQ	Effec	t HQ
COPECs	Detection	Maximum	Tendency	CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, wwt)	_							-	
Aluminium	5 / 5	4.8	6.9	4.2	13.5	1.1	1.6	0.4	0.5
Barium	5/5	0.366	0.48	NA	NA		## NO		
Beryllium	0/5	0.005	0.01	NA:	NA		****	- m	==
Cadmium .	5 / 5	0.046	0.08	0.10	0.29	0.5	0.8	0.2	0.3
Chromium	5 / 5	0.44	0.60	0.58	NA	0.8	1.0		
Cobalt	5/5	0.046	0.06	NA	NA	and and	701 205	PAGE 1990	***
Copper	5/5	1.64	1.9	NA	2.4	and mit	W W	0.7	0.8
Iron	5 / 5	32.9	36.0	NA	NA	MK W	Mi in	100 100	100 COV
Lead	5 / 5	0.03	0.06	3.80	4	0.01	0.02	0.01	0.02
Manganese	5/5	3.1	3.7	NA	NA		-	BF 190	
Mercury	5 / 5	0.0082	0.01	NA	0.73	ate 440	MR ME	0.01	0.01
Molybdenum	0/5.	0.15	0.15	NA	NA	246 200.	Mark Mark Control of the Control of	and the	W 40
Selenium	5/5	0.50	0.60	0.37	0.76	1.4	1.6	0.7	0.8
Thallium	0/5	0.02	0.02	NA	NA		260 900	ont may	***************************************
Vanadium	2/5	0.12	0.20	0.02	0.41	6	10.0	0.3	0.5
Zinc	5/5	21.5	23.2	16.4	NA	1.3	1.4		

mg/kg, wwt - milligrams per kilogram, wet weight

CBR - Critical Body Residue (mg/kg, wwt)

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

NA - Not available

Attachment 7.51 Incremental Risk for Brook Trout in School House Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

				······································		***************************************						
	-		No Effec	t Scenario					Effect S	cenario		
		Hazard	Quotient		Incremer	ntal Risk*		Hazard	Quotient		Incremer	ıtal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminium	3.0	3.0	1.1	1.6	1.8	1.3	0.9	0.9	0.4	0.5	· <1	<1
Barium	***			***				No. 804			-	
Beryllium					-				****			
Cadmium	0.2	0.2	0.5	0.8	<1	<1	0.1	0.1	0.2	0.3	<1	<1
Chromium	0.5	0.5	8.0	1.0	<1	<1						
Cobalt				** pa		_						
Copper		***					3.3	3.3	0.7	0.8	2.6	2.5
Iron								***	***	•		
Lead	0.01	0.01	0.01	0.02	<1	<1	0.01	0.01	0.01	0.02	<1	<1
Manganese		40 XW		= =						**		-
Mercury							0.004	0.004	0.01	0.01	<1	<1
Molybdenum		***								ma ma		
Selenium	0.8	0.8	1.4	1.6	<1	<1	0.4	0.4	0.7	8.0	<1	<1
Thallium		- Anni Basi		-				**	-			
Vanadium	5.0	5.0	6	10.0	<1	<1	0.2	0.2	0.3	0.5	<1	<1
Zinc	1.1	1.1	1.3	1.4	<1	<1						1

COPEC - Chemical of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

⁻⁻⁻ A hazard quotient could not be calculated because no Critical Body Residue value was available.

Hazard Quotients for Blacknose Dace COPECs in School House Brook Baseline Ecological Risk Assessment

Ely Cooper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	No Effect	Effect	No Eff	ect HQ	Effec	t HQ
COPECs	Detection	Maximum	Tendency	CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, wwt)									
Aluminium	8/8	11.5	4.8	4.2	13.5	2.7	1.1	0.9	0.4
Antimony	4/8	0.40	0.13	5	9	0.1	0.03	0.04	0.01
Barium	8/8	2.3	2.0	NA	NA	96.100	### ###	in so	***************************************
Beryllium	0/8	0.005	0.01	NA	NA	THE SAME AND ADDRESS OF THE PROPERTY OF THE PR	THE SHEAT	mi mi	
Cadmium	8/8	0.07	0.04	0.1	0.29	0.7	0.4	0.2	0.1
Chromium	8/8	0.50	0.39	0.58	NA	0.9	0.7	100 MB	M 60
Cobalt	8 / 8	0.11	0.05	NA	NA	## HE		. No ter	
Copper	8 / 8	5.9	4.15	NA	2.4	***	## (##	2.5	1.7
Iron	8 / 8	44.7	33.2	NA	NA	PM 100	M co	500 AUS	
Lead	8/8	1.2	0.16	3.8	4.0	0.3	0.04	0.3	0.04
Manganese	8/8	4.2	3.7	NA	NA	MR 400	880 880	## VIII.	
Mercury	8/8	0.021	0.014	NA	0.73	70 TO	100 100	0.03	0.02
Molybdenum	0/8	0.15	0.15	NA	NA	PA NO			
Nickel	8/8	0.2	0.19	0.82	NA	0.2	0.2	==	**
Selenium	8/8	0.5	0.43	0.37	0.76	1.4	1.1	0.7	0.6
Thallium	0/8	0.02	0.02	NA	NA	m m			
Vanadium	2/8	0.10	0.10	0.02	0.41	5.0	5.0	0.2	0.2
Zinc	8/8	40.9	36.1	16.4	NA	2.5	2.2	M No	· ##

mg/kg, wwt - milligrams per kilogram, wet weight

CBR - Critical Body Residue (mg/kg, wwt)

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Hazard Quotients for Blacknose Dace COPECs in the Upstream Reference Section of School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	No Effect	Effect	No Eff	ect HQ	Effec	t HQ
COPECs	Detection	Maximum	Tendency	CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, wwt)			-						
Aluminium	2/2	26.5	20.7	4.2	13.5	6.3	4.9	2.0	1.5
Antimony	0 / 2	0.05	0.05	5.0	9.0	0.01	0.01	0.01	0.01
Barium	2/2	1.1	1.1	NA	NA			au ya	
Beryllium	0/2	0.005	0.005	NA	NA				
Cadmium	2/2	0.06	0.06	0.1	0.29	0.6	0.6	0.2	0.2
Chromium	2/2	0.50	0.50	0.58	NA	0.9	0.9	Po 100	
Cobalt	2/2	0.04	0.035	NA	NA		ton par	no no	
Copper	2 / 2	1.0	0.95	NA	2.4			0.4	0.4
Iron ·	2/2	60.5	52.80	NA	NA				
Lead	2/2	0.05	0.1	3.8	4.0	0.01	0.01	0.01	0.01
Manganese	2/2	6.1	5.71	NA	NA		w m		
Mercury	2/2	0.02	0.0	NA	0.73			0.02	0.02
Molybdenum	0/2	0.15	0.15	NA	NA			m me	**
Nickel	2/2	0.20	. 0.20	0.82	NA	0.2	0.2		
Selenium	2/2	0.70	0.70	0.37	0.76	1.9	1.9	0.9	0.9
Thallium	0/2	0.02	0.02	NA	NA	==	No. 200		
Vanadium	2/2	0.20	0.2	0.02	0.41	. 10	10	0.5	0.5
Zinc	2/2	33.9	31.8	16.4	NA	2.1	1.9	***	

mg/kg, wwt - milligrams per kilogram, wet weight

CBR - Critical Body Residue (mg/kg, wwt)

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

NA - Not available

Attachment 7.54 Incremental Risk for Blacknose Dace in School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			No Effec	ct Scenario					Effect S	cenario	-	ALL THE THE PARTY OF THE PARTY
		Hazard	Quotient		Increme	ntal Risk*		Hazaro	Quotient		Increme	ntal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminium	2.7	1.1	6.3	4.9	<1	<1	0.9	0.4	2.0	1.5	<1	<1
Antimony	0.1	0.03	0.01	0.01	<1	<1	0.04	0.01	0.01	0.01	. <1	<1
Barium								THE STATE		mit ten		
Beryllium				- 444				No set	38 BB	THE SEC	-	
Cadmium	0.7	0.4	0.6	0.6	<1	<1	0.2	0.1	0.2	0.2	<1	<1
Chromium	0.9	0.7	0.9	0.9	<1	<1	AND SAN	MAK MAK	30.50	THE REAL PROPERTY AND ADDRESS OF THE PROPERTY		
Cobalt										** W		
Copper							2.5	1.7	0.4	0.4	2.0	1.3
Iron ·		No 140										
Lead	0.3	0.04	0.01	0.01	<1	<1	0.3	0.04	0.01	0.01	<1	<1
Manganese		No. 100	esz ese	MA 500				90 Mg		AP 409		
Mercury		W W					0.03	0.02	0.02	0.02	<1	<1
Molybdenum										## BE		
Nickel	0.2	0.2	0.2	0.2	<1	<1			***	## 45		
Selenium	1.4	1.1	1.9	1.9	<1	<1	0.7	0.6	0.9	0.9	<1	<1
Thallium		9W 300	No and	200 200				Mari Sala		Mit las		
Vanadium	5.0	5.0	10	10	<1	<1	0.2	0.2	0.5	0.5	<1	<1
Zinc	2.5	2.2	2.1	1.9	<1	<1	# m	SE ED.	***	10 m		

COPEC - Chemical of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

⁻⁻⁻ A hazard quotietn could not be calculated because no Critical Body Residue value was available.

Attachment 7.55 Hazard Quotients for Brook Trout COPECs in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	No Effect	Effect	No Eff	ect HQ	Effe	t HQ
COPECs	Detection	Maximum	Tendency	CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, wwt)	***************************************								
Aluminum	2/2	3.4	2.3	4.2	13.5	0.8	0.5	0.3	0.2
Barium	2/2	0.51	0.48	NA	NA	70 M		## ##	***************************************
Beryllium	0 / 2	0.005	0.005	NA	NA	300 000	MM 400	100 AB	## HW
Cadmium	2 / 2	0.03	0.02	0.10	0.29	0.3	0.2	0.1	0.1
Chromium	1 / 2	0.30	0.23	0.58	NA	0.5	0.4	-	
Cobalt	2/2	0.06	0.04	NA	NA	**			
Copper	2/2	1.3	1.1	NA	2.4			0.5	0.4
Iron	2/2	24.6	22.8	NA	NA	***		**	**
Lead	1/2	0.01	0.008	3.8	4.0	0.003	0.002	0.003	0.002
Manganese	2/2	3.1	2.6	NA	NA	Net too	***		100 100
Mercury	2/2	0.006	0.006	NA	0.73	==	==	0.01	0.01
Molybdenum	0 / 2	0.15	0.15	NA	NA				
Nickel	1 / 2	0.10	0.08	0.82	NA	0.1	0.1		
Selenium	2/2	0.30	0.30	0.37	0.76	0.8	0.8	0.4	0.4
Thallium	0/2	0.02	0.02	NA	NA	***************************************	## ==	m to	**
Vanadium	0/2	0.10	0.10	0.02	0.41	5.0	5.0	0.2	0.2
Zinc	2/2	18.2	17.4	16.4	NA	1.1	1.1	200 Mile	. 80 90

mg/kg wwt - milligrams per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

CBR - Critical Body Residue

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Attachment 7.56 Incremental Risk for Brook Trout in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

				······································	***************************************	***************************************						
			No	Effect					Eff	ect		
ļ		Hazard	Quotient		Incremen	ntal Risk*		Hazard	Quotient		Incremental Risk*	
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum	0.8	0.5	NA	NA	<1	<1	0.3	0.2	NA	NÄ	<1	<1
Barium			NA	NA					NA	NA		
Beryllium			NA	NA					NA	NA		
Cadmium	0.3	0.2	NA	NA	<1	<1	0.1	0.1	NA	NA	<1	<1
Chromium	0.5	0.4	NA	NA	<1	<1			NA	NA		
Cobalt	==		NA	NA			**	ent 100	NA	NA		
Copper		and the	NA	NA			0.5	0.4	NA	NA	<1	<1
Iron	***	Mr ma	NA	NA				### ###	NA	NA		
Lead	0.003	0.002	NA	NA	<1	<1	0.003	0.002	NA	NA	<1	<1
Manganese	982 MS		NA	NA			- ·		NA	NA		
Mercury .	Market and the second s	At he	NA	NA			0.01	0.01	NA	NA	<1	<1
Molybdenum			NA	NA			M M	en de la completa de La completa de la completa del la completa de la completa del la completa de la completa del la completa de la completa de la completa del la completa de la completa del la	NA	NA		
Nickel	0.1	0.1	NA	NA	<1	<1	300 MI	###.HB	NA	NA		
Selenium	0.8	0.8	NA	NA	<1	<1	0.4	0.4	NA	NA	<1	<1
Thallium	***************************************		NA	NA				100 to	NA	NA		
Vanadium	5.0	5.0	NA	NA	5.0	5.0	0.2	0.2	NA	NA	<1	<1
Zinc	1.1	1.1	NA .	NA	1.1	1.1			NA	NA		

Note: No Brook Trout were collected from the reference portion of the Ompompanoosuc River.

EBOR - East Branch of the Opompanoosuc River

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

NA - Not available

Created by: RAR 6/10/2008 QC'd by: EK 6/13/2008

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

⁻⁻⁻ A hazard quotient could not be calculated because no Critical Body Residue value was available.

Attachment 7.57 Hazard Quotients for Blacknose Dace COPECs in the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of	Reasonable	Central	No Effect	Effect	No Eff	ect HQ	Effec	t HQ
COPECs	Detection	Maximum	Tendency	CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, wwt)					······································		· · · · · · · · · · · · · · · · · · ·		
Aluminum	6/6	16.8	8.72	4.2	13.5	4.0	2.1	1.2	0.6
Barium	6 / 6	2.4	2.1	NA	NA	***************************************	364 849	100 EE	
Beryllium	0/6	0.005	0.01	NA	NA	600 mm	***	****	**************************************
Cadmium	6/6	0.07	0.05	0.10	0.29	0.7	0.5	0.2	0.2
Chromium	6/6 ·	0.30	0.28	0.58	NA	0.5	0.5	NO 500	**************************************
Cobalt	6/6	0.09	0.08	NA	NA	en en		Mile top	200 FEB
Copper	6/6	3.5	2.4	NA	2.4	ma 4m		1.5	1.0
Iron	6/6	50.8	35.5	NA	NA		•		
Lead	6/6	0.04	0.03	3.8	4.0	0.01	0.01	0.01	. 0.01
Manganese	6/6	6.4	5.3	NA	NA	## PM	## ##	= =	## ##
Mercury	6/6	0.02	0.02	NA	0.73			0.03	0.02
Molybdenum	0/6	0.15	0.15	NA NA	NA	NO 100			## ## *********************************
Nickel	6/6	0.20	0.17	0.82	NA	0.2	0.2		**************************************
Selenium	6/6	0.50	0.38	0.37	0.76	1.4	1.0	0.7	0.5
Thallium	0/6	0.02	0.02	NA	NA .		***************************************		
Vanadium	0/6	0.10	0.10	0.02	0.41	5.0	5.0	0.2	0.2
Zinc	6/6	41.6	39.0	16.4	NA	2.5	2.4	Pir ses	

mg/kg, wwt = Milligrams per kilogram, wet weight

EBOR - East Branch of the Ompompanoosuc River

COPECs - Chemicals of Potential Ecological Conern

CBR - Critical Body Residue

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Attachment 7.58 Hazard Quotients for Blacknose Dace COPECs in the Reference Section of the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

	Frequency of				Effect	No Eff	ect HQ	Effec	t HQ
COPECs	Detection	Reasonable Maximum	Central Tendency	No Effect CBR	CBR	RME	CTE	RME	CTE
Metals (mg/kg, w	wt)								
Aluminium	3 / 3	8.9	6.4	4.2	13.5	2.1	1.5	0.7	0.5
Barium	3/3	2.3	2.2	NA NA	NA	## ···	MI MI	***	***
Beryllium	0/3	0.005	0.01	NA	NA	980 500	We not		mil su mil mil mil mil mil mil mil mil mil mil
Cadmium	3/3	0.04	0.03	0.1	0.29	0.4	0.3	0.1	0.1
Chromium	3/3	0.40	0.33	0.58	NA	0.7	0.6	***************************************	100 MB
Cobalt	3/3	0.02	0.02	NA	NA	-		==	
Copper	3/3	2.1	1.2	NA .	2.4			0.9	0.5
Iron	3/3	33.5	30.9	NA	NA				ma me minera mana li ferett melijah matana mana mendeli dan Sa
Lead	3/3	0.03	0.03	3.8	4	0.01	0.01	0.01	0.01
Manganese	3/3	5.5	5.3	NA ·	NA			***************************************	
Mercury	3/3	0.03	0.02	NA	0.73	WE THE	. ••	0.04	0.03
Molybdenum	0/3	0.15	0.15	NA	NA	111 60	50 Mb	EN 186	900 MB
Nickel	3/3	0.20	0.20	0.82	NA	0.2	0.2		
Selenium	3 / 3	0.40	0.40	0.37	0.76	1.1	1.1	0.5	0.5
Thallium	0/3	0.02	0.02	NA	NA	****	••	340 AUT	100 100
Vanadium	0/3	0.10	0.10	0.02	0.41	5.0	5.0	0.2	0.2
Zinc	3/3	42.5	39.0	16.4	NA	2.6	2.4	20 M	

mg/kg, wwt = Milligrams per kilogram, wet weight

COPECs - Chemicals of Potential Ecological Conern

EBOR - East Branch of the Ompompanoosuc River

CBR - Critical Body Residue

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

Attachment 7.59 Incremental Risk for Blacknose Dace in the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

										,		
			No	Effect					Eff	ect		
		Hazard	Quotient		Incremer	ntal Risk*	Hazard Quotient				Incremental Risk*	
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum	4.0	2.1	2.1	1.5	1.9	<1	1.2	0.6	0.7	0.5	<1	<1
Barium						-						
Beryllium		™	***			-						
Cadmium	0.7	0.5	0.4	0.3	<1	<1	0.2	0.2	0.1	0.1	<1	<1
Chromium	0.5	0.5	0.7	0.6	<1	<1						
Cobalt			***	MW SNA				me tale		-		
Copper	ter ess			pat par			1.5	1.0	0.9	0.5	<1	<1
Iron						-			300 No.			
Lead	0.01	0.01	0.01	0.01	<1	<1	0.01	0.01	0.01	0.01	<1	<1
Manganese	**		400 MW	-				760 500	## ##L	800 SM		
Mercury			560 560				0.03	0.02	0.04	0.03	<1	<1
Molybdenum			*** Fin						==			
Nickel	0.2	0.2	0.2	0.2	<1	<1		** ***	000 MIC	**		
Selenium	1.4	1.0	1.1	1.1	<1	<1	0.7	0.5	0.5	0.5	<1	<1
Thallium	ma est	==	M M	98 965			an M		NO. ME	98 W		
Vanadium	5.0	5.0	5.0	5.0	<1	<1	0.2	0.2	0.2	0.2	<1	<1
Zinc	2.5	2.4	2.6	2.4	<1	<1		\$11 MA		-		

COPECs - Chemicals of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

^{-- -} A hazard quotient could not be calculated because no Critical Body Residue value was available.

Attachment 7.60: Weight-of-Evidence Integration for Fish Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 3:

Maintain a stable and healthy fish community

Are the COPEC levels in surface water sufficiently high to cause biologically-significant changes or impair the function of the fish community in the three streams affected by Ely Mine?

Measurement Endpoints

- 3.A: Compare dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks
- 3.B: Survival and growth in juvenile fathead minnows (P. promelas)
- 3.C: Compare COPEC levels measured in whole fish to no effect and effect CBRs
- 3.D: Evaluate the structure and function of the fish community in the field

Weight-of-Evidence Integration

The main stem of Ely Brook		WEIG	HT OF EVID	ENCE	
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High
Yes/High	3.A		3.B		
Yes/Low					
Undeterminate	*				
. No Harm					

Schoolhouse Brook		WEIGHT OF EVIDENCE								
		Low - Medium -								
	HARM/MAGNITUDE	Low	Medium	Medium	High	High				
	Ýes/High	3.A		3.B		3.D				
	Yes/Low			3.C						
	Undeterminate									
	No Harm									

The EBOR		WEIGHT OF EVIDENCE						
		Low -		. Medium -				
HARM/MAGNITUDE	Low	Medium	Medium	High	High			
Yes/High	3.A							
Yes/Low								
Undeterminate								
No Harm			3.C		3.D			

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the fish community is discussed in Section 7 of the BERA

Attachment 7.61: Weight-of-Evidence Integration for Amphibians Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 4:

Maintain stable and healthy amphibian populations

Are the COPEC levels in the water column sufficiently high to cause biologically-significant changes or impair the function of the amphibian populations at the on-Site ponds?

Measurement Endpoints

- 4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks
- 4.B: Survival and growth in juvenile fathead minnows (P. promelas)
- 4.C: Evaluate hatching and survival of wood frog eggs and tadpoles exposed to the ponds in the field

Weight-of-Evidence Integration

Pond 2 on the east branch of Ely Brook		WEIG	HT OF EVID	ENCE	
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High
Yes/High		Moditain	Modium	1.1911	111911
Yes/Low					
Undeterminate					
No Harm					

Pond 3 on the east branch of Ely Brook	WEIGHT OF EVIDENCE						
		Low -		Medium -			
HARM/MAGNITUDE	Low	Medium	Medium	High	High		
Yes/High		,					
Yes/Low	4.A		·				
Undeterminate							
No Harm							

Pond 4 on the east branch of Ely Brook	WEIGHT OF EVIDENCE					
		Low -		Medium -		
HARM/MAGNITUDE	Low	Medium	Medium	High	High	
Yes/High			4.B		4.C	
Yes/Low						
Undeterminate						
No Harm	4.A					

Pond 5 on the east branch of Ely Brook	WEIGHT OF EVIDENCE				
		Low -		Medium -	
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High	4.A		4.B		4.C
Yes/Low					
Undeterminate					
No Harm					

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the amphibian populations is discussed in Section 7 of the BERA

Attachment 7.62 Hazard Quotients for Tree Swallow COPECs at School House Brook Ely Copper Mine Superfund Site, Vershire, VT

										
		RME	Scenario				CTE	Scenario		
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect	Effect HQ
Metals								,		
Aluminum	2.12E+03					1.24E+03				**
Antimony	8.61E-01			and and	***************************************	1.27E+00			***************************************	
Arsenic	6.41E-01	5.5	22	0.1	0.03	4.67E-01	5.5	22	0.1	0.02
Barium	1.82E+02	208	416	0.9	0.4	1.06E+02	208	416	0.5	0.3
Beryllium	3.77E-01		en en	. mm	***	1.32E-01		****		400 MW
Cadmium [^]	-1.40E-02	1.9	21.1	-0.01	-0.001	3.65E-02	1.9	21.1	0.02	0.002
Chromium	2.46E+01	37.7	75.4	0.7	0.3	2.10E+01	37.7	75.4	0.6	0.3
Cobalt	1.51E+02	7.61	38.1	20	4.0	4.94E+01	7.61	38.1	6.5	1.3
Copper	6.74E+02	33	62	20	11	4.08E+02	33	62	12.4	6.6
Iron	7.62E+03			==		1.85E+03		****		
Lead	·1.60E+00	7.4	37	0.2	0.04	4.05E-01	7.4	37	0.1	0.01
Manganese	5.95E+02	977	4885	0.6	0.1	4.02E+02	977	4885	0.4	0.1
Mercury	4.67E-02	0.45	0.91	0.1	0.1	5.57E-02	0.45	0.91	0.1	0.1
Molybdenum	4.70E+00	7.1	35.3	0.7	0.1	2.52E+00	7.1	35.3	0.4	0.1
Nickel	5.24E+01	80	107	0.7	0.5	3.30E+01	80	107	0.4	0.3
Selenium	3.13E+00	0.4	8.0	7.8	3.9	2.23E+00	0.4	0.8	5.6	2.8
Silver	1.59E-01	14.5	43.6	0.01	0.004	2.17E-01	14.5	43.6	0.01	0.00
Strontium	3.81E+02		***			3.50E+02				
Vanadium	6.29E+01	11.4	56.9	5.5	1.1	3.16E+01	11.38	56.9	2.8	0.6
Zinc	9.73E+01	14.5	131	6.7	0.7	8.67E+01	14.5	131	6.0	0.7

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook.

 $\mbox{mg/kg}$ bw-day - $\mbox{milligrams}$ per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

TRV - Toxicity Reference Value

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

-- - A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.48

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value and therefore a negative EDD.

Attachment 7.63 Hazard Quotients for Tree Swallow COPECs in the Upstream Reference Section of School House Brook Ely Copper Mine Superfund Site, Vershire, VT

										·
÷		RMES	cenario				CTE	Scenario		
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals	·		·						-	
Aluminum	2.12E+03					1.29E+03				**
Antimony	5.40E-02					1.16E+00				**
Arsenic	6.86E-01	5.5	22	0.1	0.03	4.97E-01	5.5	22	0.1	0.0
Barium	2.54E+02 [*]	208	416	1.2	0.6	1.11E+02	208	416	0.5	0.3
Beryllium	4.69E-01					1.41E-01				**
Cadmium	8.33E-01	1.9	21.1	0.4	0.04	2.91E-02	1.9	21.1	0.0	0.00
Chromium	5.50E+01	37.7	75.4	1.5	0.7	2.45E+01	37.7	75.4	0.6	0.3
Cobalt	1.20E+01	7.61	38.1	1.6	0.3	9.11E+00	7.61	38.1	1.2	0.2
Copper	1.84E+01	33	62	0.6	0.3	1.31E+01	33	62	0.4	0.2
Iron	3.34E+03			## ##		1.29E+03			m m	
Lead	5.72E-01	7.4	37	0.1	0.02	2.75E-01	7.4	37	0.0	0.0
Manganese	5.45E+02	977	4885	0.6	0.1	4.02E+02	977	4885	0.4	0.1
Mercury	2.72E-02	0.45	0.91	0.1	0.03	5.97E-02	0.45	0.91	0.1	0.1
Molybdenum	5.80E-01	7.1	35.3	0.1	0.02	1.14E+00	7.1	35.3	0.2	0.03
Nickel	5.04E+01	80	107	0.6	0.5	3.40E+01	80	107	0.4	0.3
Selenium	3.71E-02	0.4	0.8	0.1	0.05	2.01E-01	0.4	0.8	0.5	0.3
Silver	1.17E-01	14.5	43.6	0.01	0.003	3.14E-01	14.5	43.6	0.0	0.01
Strontium	4.63E+02	mm	**************************************	en mi		4.13E+02	•••		Me Me	
Thallium	2.56E+01					3.54E+00			en en	
Vanadium	4.91E+01	11.4	56.9	4.3	0.9	2.64E+01	11.38	56.9	2.3	0.5
Zinc	6.07E+01	14.5	131	4.2	0.5	4.36E+01	14.5	131	3.0	0.3

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

TRV - Toxicity Reference Value

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

- -- A hazard quotient could not be calculated because no TRV was available.
- 1 Total EDD is calculated in Attachment 5.49

Incremental Risk for Tree Swallows at School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			No Effe	ct Scenario					Effect S	cenario		
		Hazard	Quotient		Increme	ntal Risk*		Hazard	l Quotient		Incremen	tal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum												
Antimony												
Arsenic	0.1	0.1	0.1	0.1	<1	<1	0.0	0.02	0.03	0.0	<1	<1
Barium	0.9	0.5	1.2	0.5	<1	<1	0.4	0.3	0.6	0.3	<1	<1
Beryllium												
Cadmium^	0.0	0.0	0.4	0.0	<1	<1	-0.001	0.00	0.04	0.00	<1	<1
Chromium	0.7	0.6	1.5	0.6	<1	<1	0.3	0.3	0.7	0.3	<1	<1
Cobalt	20	6.5	1.6	1.2	18	5.3	4.0	1.3	0.3	0.2	3.6	1.1
Copper	20	12.4	0.6	0.4	20	12	11	6.6	0.3	0.2	11	6.4
Iron												
Lead	0.2	0.1	0.1	0.0	<1	<1	0.04	0.01	0.02	0.0	<1	<1
Manganese	0.6	0.4	0.6	0.4	<1	<1	0.1	0.1	0.11	0.1	<1	<1
Mercury	0.1	0.1	0	0	<1	<1	0.1	0.1	0	0	<1	<1
Molybdenum	0.7	0.4	0.1	0.2	<1	<1	0.1	0.1	0.02	0.03	<1	<1
Nickel	0.7	0.4	0.6	0.4	<1	<1	0.5	0.3	0.5	0.3	<1	<1
Selenium	7.8	5.6	0.1	0.5	7.7	5.1	3.9	2.8	0.05	0.3	3.9	2.5
Silver	0.0	0.01	0.01	0.0	<1	<1	0.004	0.00	0.003	0.01	<1	<1
Strontium												
Vanadium	5.5	2.8	4.3	2.3	1.2	<1	1.1	0.6	0.9	0.5	<1	<1
Zinc	6.7	6.0	4.2	3.0	2.5	3.0	0.7	0.7	0.5	0.3	<1	<1

COPEC - Chemical of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.65 Hazard Quotients for Tree Swallow COPECs at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		· ·								***
		RME	Scenario	-			CTE S	cenario		
						,				
	Total EDD ¹	TRV	TRV	No Effect		Total EDD ¹	TRV	TRV	No Effect	Effect
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ
Metals				*						
Aluminum.	2.47E+03					1.38E+03			100 (40)	***
Antimony	6.48E-01			AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	**	1.33E+00			400 MM	
Arsenic	1.14E+00	5.5	22	0.2	0.1	6.01E-01	5.5	22	0.1	0.0
Barium	1.54E+02	208	416	0.7	0.4	7.93E+01	208	416	0.4	0.2
Beryllium	4.22E-01			***		9.28E-02		*** *** ·		**
Cadmium	-9.93E-02	1.9	21.1	-0.1	-0.005	5.56E-02	1.9	21.1	0.0	0.0
Chromium	3.33E+01	37.7	75.4	0.9	0.4	2.00E+01	37.7	75.4	0.5	0.3
Cobalt	1.97E+02	7.61	38.1	26	5.2	2.56E+01	7.61	38.1	3.4	0.7
Copper	1.69E+02	33	62	5.1	2.7	1.00E+02	33	62	3.0	1.6
Iron	2.95E+03					1.39E+03	WW MA.		4.	
Lead	5.62E-01	7.4	37	0.1	0.02	3.07E-01	7.4	37	0.0	0.0
Manganese	4.32E+02	977	4,885	0.4	0.1	3.22E+02	977	4,885	0.3	0.1
Mercury	4.67E-02	. 0.45	0.91	0.1	0.1	6.78E-02	0.45	0.91	0.2	0.1
Molybdenum	2.28E+00	7.1	35.3	0.3	0.1	1.91E+00	7.1	35.3	0.3	0.05
Nickel	5.04E+01	80	107	0.6	0.5	3.23E+01	80	107	0.4	0.3
Selenium	2.70E-01	0.4	0.8	0.7	0.3	1.09E+00	0.4	0.8	2.7	1.4
Silver	1.85E-01	14.5	43.6	0.01	0.004	2.35E-01	14.5	43.6	0.0	0.01
Strontium	3.47E+02					3.47E+02			***	***
Thallium	1.76E+01		## MR	## ##		5.80E+00	***			
Vanadium	1.13E+02	11.38	56.9	9.9	2.0	2.22E+01	11.4	56.9	2.0	0.4
Zinc	8.89E+01	14.5	131	6.1	0.7	6.60E+01	14.5	131	4.5	0.5

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

TRV - Toxicity Reference Value

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

HQ - Hazard Quotient

--- A hazard quotient could not be calculated because no TRV was available.

¹ Total EDD is calculated in Attachment 5.50

Attachment 7.66 Hazard Quotients for Tree Swallow COPECs at the Upstream Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME S	cenario				CTE	Scenario		
	Total EDD ¹	TRV	TRV	No Effect	Effect	Total EDD ¹	TRV	TRV	No Effect	
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ	(mg/kg bw-day)	NOAEL	LOAEL	HQ	Effect HQ
Metals									· · · · · · · · · · · · · · · · · · ·	
Aluminum	1.16E+03					9.88E+02				
Antimony	6.84E-02			4		1.27E+00		·		
Arsenic	7.01E-01	5.5	22	0.1	0.03	1.48E-01	5.5	22	0.0	0.0
Barium	3.20E+02	208	416	1.5	0.8	1.36E+02	208	416	0.7	0.3
Beryllium	3.75E-01			. ##		1.76E-01				**************************************
Cadmium	8.34E-01	1.9	21.1	0.4	0.04	4.16E-03	1.9	21.1	0.0	0.00
Chromium	3.92E+01	37.7	75.4	1.0	0.5	2.21E+01	37.7	75.4	0.6	0.3
Cobalt	7.61E+00	7.61	38.1	1.0	0.2	3.63E+00	7.61	38.1	0.5	0.1
Copper	5.50E+00	33	62	0.2	0.1	3.88E+00	33	62	0.1	0.06
Iron	8.32E+02			THE THE PROPERTY OF THE PROPER		5.68E+02	996A 399A	ens and	. ***	
Lead	4.90E-01	7.4	37	0.1	0.01	3.84E-01	7.4	37	0.1	0.0
Manganese	4.32E+02	977	4885	0.4	0.1	2.53E+02	977	4885	0.3	0.1
Mercury	5.83E-02	0.45	0.9	0.1	0.1	4.20E-02	0.45	0.9	0.1	0.05
Molybdenum	3.31E-01	7.1	35.3	0.05	0.01	3.31E-01	7.1	35.3	0.05	0.01
Nickel	3.03E+01	80	107	0.4	0.3	2.12E+01	80	107	0.3	0.2
Selenium	1.02E+01	0.4	0.8	26	13	1.34E+00	0.4	0.8	3.3	1.7
Silver	9.07E-02	14.5	43.60	0.01	0.002	2.46E-01	14.5	43.60	0.0	0.01
Strontium	3.56E+02			en m		3.56E+02			==	
Thallium	2.24E+01		ma ana		***	1.16E+01			No. 100	
Vanadium	7.49E+01	11.38	56.9	6.6	1.3	4.01E+01	11.4	56.9	3.5	0.70
Zinc	4.99E+01	14.5	131	3.4	0.4	3.36E+01	14.5	131	2.3	0.3

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook.

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

TRV - Toxicity Reference Value

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.51

Created by: RAR 5/5/2008 QC'd by: EK 5/12/2008

Attachment 7.67 Incremental Risk for the Tree Swallows at the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site, Vershire, VT

			No	Effect					Eff	ect		
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals							-					
Aluminum												***
Antimony			## ##									
Arsenic	0.2	0.1	0.1	0.0	<1	<1	0.1	0.0	0.03	0.01	<1	<1
Barium	0.7	0.4	1.5	0.7	<1	<1	0.4	0.2	0.8	0.3	<1	<1
Beryllium	w w		** ••									
Cadmium	-0.1	0.0	0.4	0.0	<1	<1	-0.005	0.0	0.04	0.00	<1	<1
Chromium	0.9	0.5	1.0	0.6	<1	<1	0.4	0.3	0.5	0.3	<1	<1
Cobalt	26	3.4	1.0	0.5	25	2.9	5.2	0.7	0.2	0.1	5.0	<1
Copper	5.1	3.0	0.2	0.1	5.0	2.9	2.7	1.6	0.09	0.06	2.6	1.6
Iron		100 cm	## ##					m w				
Lead	0.1	0.0	0.1	0.1	<1	<1	0.02	0.0	0.01	0.01	<1	<1
Manganese	0.4	0.3	0.4	0.3	<1	<1	0.1	0.1	0.09	0.1	<1	<1
Mercury	0.1	0.2	0.1	0.1	<1	<1	0.1	0.1	0.06	0.05	<1	<1
Molybdenum	0.3	0.3	0.05	0.05	<1	<1	0.1	0.05	0.01	0.01	<1	<1
Nickel	0.6	0.4	0.4	0.3	<1	<1	0.5	0.3	0.3	0.2	<1	<1
Selenium	0.7	2.7	26	3.3	<1	<1	0.3	1.4	13	1.7	<1	<1
Silver	0.01	0.0	0.01	0.0	<1	<1	0.004	0.01	0.002	0.01	<1	<1
Strontium		=	Martin Ma	100 Mg			==			No ess	-	
Thallium		100 to	Sand Name	We have					the top			
Vanadium	10	2.0	6.6	3.5	3.3	<1	2.0	0.4	1.3	0.7	<1	<1
Zinc	6.1	4.5	3.4	2.3	2.7	2.2	0.7	0.5	0.4	0.3	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

^{-- -} Not Available

Attachment 7.68: Weight-of-Evidence Integration for Insectivorous Birds Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 5:

Maintain stable and healthy insectivorous bird populations

Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of the insectivorous bird populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

Measurement Endpoint

5.A: Use sediment analytical data to estimate the body residues of COPECs in winged aquatic insects; use food chain modeling to calculate daily doses from the ingestion of surface water and winged aquatic insects, and compare these values to TRVs.

Weight-of-Evidence Integration

Schoolhouse Brook	WEIGHT OF EVIDENCE								
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High				
Yes/High									
Yes/Low		5.A							
Undeterminate		,							
No Harm	·								

The EBOR	WEIGHT OF EVIDENCE								
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High				
Yes/High									
Yes/Low		5.A							
Undeterminate				·					
No Harm									

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the insectivorous bird populations is discussed in Section 7 of the BERA

Attachment 7.69 Hazard Quotients for Eastern Small-footed Bat COPECs at School House Brook Ely Copper Mine Superfund Site, Vershire, VT

		RME S	cenario				CTE S	Scenario		
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals				-				·		
Aluminum	1.03E+03					6.04E+02				
Antimony	4.21E-01	13.3	66.5	0.03	0.01	6.22E-01	13.3	66.5	0.05	0.01
Arsenic	3.13E-01	5.7	11.6	0.1	0.03	2.32E-01	5.7	11.6	0.04	0.02
Barium	8.89E+01	51.8	259	1.7	0.3	5.19E+01	51.8	259	1.0	0.2
Beryllium	1.84E-01	0.53	2.7	0.3	0.1	6.48E-02	0.53	2.7	0.1	0.02
Cadmium^	-3.67E-03	5.1	7.1	-0.001	-0.001	9.69E-03	5.1	7.1	0.002	0.001
Chromium	1.08E+00	8.8	44.2	0.1	0.02	9.25E-01	8.8	44.2	0.1	0.02
Cobalt	7.37E+01	7.3	36.7	10	2.0	2.42E+01	7.3	36.7	3.3	0.7
Copper	6.21E+02	11.7	15.1	53	41	3.77E+02	11.7	15.1	32	25
Iron	3.73E+03					9.04E+02		WA 100		
Lead	1.82E+00	34	80	0.1	0.02	4.61E-01	34	80	0.01	0.01
Manganese	2.91E+02	88	284	3.3	1.0	1.96E+02	88	284	2.2	0.7
Mercury	5.74E-03	13.2	56	4.35E-04	1.02E-04	6.82E-03	13.2	56	0.001	1.22E-04
Molybdenum	2.30E+00	2.6	13	0.9	0.2	1.23E+00	2.6	13	0.5	0.1
Nickel	2.56E+01	60	80	0.4	0.3	1.61E+01	60	80	0.3	0.2
Selenium	1.53E+00	0.35	1.05	4.4	1.5	1.09E+00	0.35	1.05	3.1	1.0
Silver	7.78E-02	44.4	222	0.002	3.50E-04	1.06E-01	44.4	222	0.002	4.79E-04
Strontium	1.87E+02			***		1.71E+02				
Thallium	6.25E-01	0.2	1	3.1	0.6	6.25E-01	0.2	1	3.1	0.6
Vanadium	3.08E+01	5.9	8.3	5.2	3.7	1.54E+01	5.9	8.3	2.6	1.9
Zinc	4.76E+01	160	320	0.3	0.1	4.24E+01	160	320	0.3	0.1

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook.

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

TRV - Toxicity Reference Value

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.52

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value and therefore a negative EDD. mg/kg bw-day - milligrams per kilogram of body weight per day

Attachment 7.70

Hazard Quotients for Eastern Small-footed Bat COPECs at the Reference Section of School House Brook

Ely Copper Mine Superfund Site, Vershire, VT

		RMES	Scenario	•			CTE	Scenario		
	Total EDD ¹	TRV	TRV	No Effect	Effect	Total EDD ¹	TRV	TRV	No Effect	
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ	(mg/kg bw-day)	NOAEL	LOAEL	HQ	Effect HQ
Metals						<u> </u>			•	
Aluminum	1.03E+03	·				6.30E+02				
Antimony	2.64E-02	13.3	66.5	0.002	3.97E-04	5.66E-01	13.3	66.5	0.04	0.01
Arsenic	3.35E-01	5.7	11.6	0.1	0.03	2.47E-01	5.7	11.6	0.04	0.02
Barium	1.24E+02	51.8	259	2.4	0.5	5.42E+01	51.8	259	1.0	0.2
Beryllium	2.30E-01	0.53	2.7	0.4	0.1	6.95E-02	0.53	2.7	0.1	0.03
Cadmium	2.20E-01	5.1	7.1	0.04	0.03	7.85E-03	5.1	7.1	0.002	0.001
Chromium	2.42E+00	8.8	44.2	0.3	0.1	1.08E+00	8.8	44.2	0.1	0.02
Cobalt	5.88E+00	7.3	36.7	0.8	0.2	4.45E+00	7.3	36.7	0.6	0.1
Copper	1.70E+01	11.7	15.1	1.4	1.1	1.21E+01	11.7	15.1	1.0	0.8
Iron	1.63E+03			Mar and	tes est	6.29E+02				## ### ###############################
Lead	6.51E-01	34	80	0.02	0.01	3.13E-01	34	80	0.01	0.004
Manganese	2.66E+02	88	284	3.0	0.9	1.96E+02	88	284	2.2	0.7
Mercury	3.35E-03	13.2	56	2.54E-04	5.98E-05	7.31E-03	13.2	56	0.001	1.31E-04
Molybdenum	2.83E-01	2.6	13	0.1	0.02	5.56E-01	2.6	13	0.2	0.04
Nickel	2.46E+01	60	80	0.4	0.3	1.66E+01	60	80	0.3	0.2
Selenium	1.84E-02	0.35	1.05	0.1	0.02	9.83E-02	0.35	1.05	0.3	0.1
Silver.	5.75E-02	44.4	222	0.001	2.59E-04	1.54E-01	44.4	222	0.003	0.001
Strontium	2.26E+02			test, see	JAN 188	2.02E+02	***		- Mar 146	les ess
Thallium	1.25E+01	0.2	1.0	62	12	1.73E+00	0.2	1.0	8.6	1.7
Vanadium	2.40E+01	5.9	8.3	4.1	2.9	1.29E+01	5.9	8.3	2.2	1.6
Zinc	2.97E+01	160	320	0.2	0.1	2.13E+01	160	320	0.1	0.1

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of School House Brook. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

EDD - Estimated Daily Dose

TRV - Toxicity Reference Values

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

-- - A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.53

Created by: RAR 5/13/2008 QC'd by: EK 5/19/2008

Incremental Risk for the Eastern Small-footed Bat at School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site Vershire, VT

<u>, , , , , , , , , , , , , , , , , , , </u>			No Effec	t Scenario					Effect S	cenario		Managas Musuka sana an
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremer	ıtal Risk*
COPEC	SITE-RME	SITE-CTE	REF-RME	REF-CTE	RME	CTE	SITE-RME	SITE-CTE	REF-RME	REF-CTE	RME	CTE
Metals						10						
Aluminum		***	***									
Antimony	0.03	0.05	0.002	0.04	<1	<1	0.01	0.01	3.97E-04	0.01	<1	<1
Arsenic	0.1	0.04	0.1	0.04	<1	<1	0.03	0.02	0.03	0.02	<1	<1
Barium	1.7	1.0	2.4	1.0	<1	<1	0.3	0.2	0.5	0.2	<1	<1
Beryllium	0.3	0.1	0.4	0.1	<1	<1	0.07	0.02	0.09	0.03	<1	<1
Cadmium^	-0.001	0.002	0.04	0.002	<1	<1	-0.001	0.001	0.03	0.001	<1	<1
Chromium	0.1	0.1	0.3	0.1	<1	<1	0.02	0.02	0.05	0.02	<1	<1
Cobalt	10	3.3	8.0	0.6	9.3	2.7	2.0	0.7	0.16	0.1	1.8	<1
Copper	53	32	1.4	1.0 ·	52	31	41	25	1.1	0.8	40	24
Iron		**	W 10	**								
Lead	0.1	0.01	0.02	0.01	<1	<1	0.02	0.01	0.01	0.004	<1	<1
Manganese	3.3	2.2	3.0	2.2	<1	<1	1.0	0.7	0.9	0.7	<1	<1
Mercury (inorganic)	4.35E-04	5.17E-04	2.54E-04	5.54E-04	<1	<1	1.02E-04	1.22E-04	5.98E-05	1.31E-04	<1	<1
Molybdenum	0.9	0.5	0.1	0.2	<1	<1	0.2	0.1	0.02	0.04	<1	<1
Nickel	0.4	0.3	0.4	0.3	<1	<1	0.3	0.2	0.3	0.2	<1	~ 1
Selenium	4.4	3.1	0.1	0.3	4.3	2.8	1.5	1.0	0.02	0.09	1.4	<1
Silver	0.002	0.002	0.001	0.003	<1	<1	3.50E-04	4.79E-04	2.59E-04	0.001	<1	<1
Thallium	3.1	3.1	. 62	8.6	<1	<1	0.6	0.6	12	1.7	<1	<1
Vanadium	5.2	2.6	4.1	2.2	1.1	<1	3.7	1.9	2.9	1.6	<1	<1
Zinc	0.3	0.3	0.2	0.1	<1	<1	0.1	0.1	0.09	0.07	<1	<1

COPEC - Chemical of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.72 Hazard Quotients for the Eastern Small-footed Bat COPECs at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME S	cenario				CTES	Scenario		
	Total EDD ¹	TRV	TRV	No Effect		Total EDD ¹	TRV	TRV	No Effect	
	1	NOAEL	LOAEL	HQ	Effect HQ		NOAEL	LOAEL	HQ	Effect HQ
COPECs	(mg/kg bw-day)	NOAEL	LOALL	nu	Ellect HQ	(mg/kg bw-day)	NOAEL	LUAEL	חע	Ellect AC
Metals							T	T	r	·
Aluminum	1.21E+03			**************************************		6.77E+02		500 000 500 000 000 000 000 000 000 000		***************************************
Antimony	3.17E-01	13.3	66.5	0.02	0.005	6.51E-01	13.3	66.5	0.05	0.01
Arsenic	5.59E-01	5.7	11.6	0.1	0.05	2.97E-01	5.7	11.6	0.1	0.03
Barium	7.54E+01	51.8	259	1.5	0.3	3.88E+01	51.8	259	0.7	0.1
Beryllium	2.07E-01	0.53	2.7	0.4	0.1	4.57E-02	0.53	2.7	0.1	0.02
Cadmium [^]	-2.62E-02	5.1	7.1	-0.01	-0.004	1.48E-02	5.1	7.1	0.003	0.002
Chromium	1.47E+00	8.8	44.2	0.2	0.03	8.79E-01	8.8	44.2	0.1	0.02
Cobalt	9.64E+01	7.3	36.7	13	2.6	1.25E+01	7.3	36.7	1.7	0.3
Copper	1.56E+02	11.7	15.1	13	10	9.26E+01	11.7	15.1	7.9	6.1
Iron	1.44E+03			**************************************	***************************************	6.78E+02		***		
Lead	6.39E-01	34	80	0.02	0.01	3.49E-01	34	80	0.01	0.004
Manganese	2.11E+02	88	284	2.4	0.7	1.58E+02	88	284	1.8	0.6
Mercury	5.74E-03	13.2	56	4.35E-04	1.03E-04	8.30E-03	13.2	56	0.001	1.48E-04
Molybdenum	1.11E+00	2.6	13	0.4	0.1	9.35E-01	2.6	13	0.4	0.1
Nickel	2.46E+01	60	80	0.4	0.3	1.58E+01	60	80	0.3	0.2
Selenium	1.33E-01	0.35	1.05	0.4	0.1	5.32E-01	0.35	1.05	1.5	0.5
Silver	9.03E-02	44.4	222	0.002	4.07E-04	1.15E-01	44.4	222	0.003	0.001
Strontium	1.70E+02			Market (() and a selection of the sele	***************************************	1.70E+02		***		
Thallium	8.59E+00	0.2	1.0	43	8.6	2.84E+00	0.2	1.0	14	2.8
Vanadium	5.51E+01	5.9	8.3	9.3	6.6	1.09E+01	5.9	8.3	1.8	1.3
Zinc	4.35E+01	160	320	0.3	0.1	3.23E+01	160	320	0.2	0.1
Note: The metals	<u>1</u>					the seed because of the Ores	<u> </u>		L	

Note: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the east branch of the Ompompanoosuc River.

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value and therefore a negative EDD. mg/kg bw-day - milligrams per kilogram of body weight per day

^{-- -} A hazard quotient could not be calculated because no TRV was available.

^{1 -} Total EDD is calculated in Attachment 5.54

Attachment 7.73

Hazard Quotients for the Eastern Small-footed Bat COPECs at the Reference Section of the EBOR

Ely Copper Mine Superfund Site, Vershire, VT

										·
		RME S	cenario				CTE S	Scenario		-
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals	(0	-	<u> </u>			,				
Aluminum	5.69E+02			94K 500		4.83E+02			Pa 100	
Antimony	3.35E-02	13.3	66.5	0.003	0.001	6.21E-01	13.3	66.5	0.05	0.01
Arsenic	3.55E-01	5.7	11.6	0.1	0.03	5.53E-01	5.7	11.6	0.1	0.05
Barium	1.57E+02	51.8	259	3.0	0.6	6.64E+01	51.8	259	1.3	0.3
Beryllium	1.84E-01	0.53	2.7	0.3	0.1	8.66E-02	0.53	2.7	0.2	0.03
Cadmium	2.20E-01	5.1	7.1	0.04	0.03	1.43E-03	5.1	7.1	2.81E-04	2.02E-04
Chromium	1.72E+00	8.8	44.2	0.2	0.04	9.73E-01	8.8	44.2	0.1	0.02
Cobalt	3.72E+00	7.3	36.7	0.5	0.1	1.78E+00	7.3	36.7	0.2	0.05
Copper	5.08E+00	11.7	15.1	. 0.4	0.3	3.58E+00	11.7	15.1	0.3	0.2
Iron	4.07E+02			M4 NA		2.78E+02				
Lead	5.58E-01	. 34	80	0.02	0.01	4.37E-01	34	80	0.01	0.01
Manganese	2.11E+02	88	284	2.4	0.7	1.24E+02	- 88	284	1.4	• 0.4
Mercury	7.14E-03	13.2	56	0.001	1.27E-04	4.76E-03	13.2	56	3.61E-04	8.50E-05
Molybdenum	1.62E-01	2.6	13	0.1	0.01	1.62E-01	2.6	13	0.1	0.01
Nickel	1.48E+01	60	80	0.2	0.2	1.03E+01	60	80	0.2	0.1
Selenium	5.01E+00	0.35	1.05	14	4.8	6.55E-01	0.35	1.05	1.9	0.6
Silver	4.44E-02	44.4	222	0.001	2.00E-04	1.21E-01	44.4	222	0.003	0.001
Strontium	1.74E+02			## ##	****	1.74E+02				
Thallium	1.09E+01	0.2	1.0	55	11	5.65E+00	0.2	1.0	28	5.7
Vanadium	3.66E+01	5.9	8.3	6.2	4.4	1.15E+01	5.9	8.3	2.0	1.4
Zinc	2.44E+01	160	320	0.2	0.1	1.64E+01	160	320	0.1	0.1

Notes: The metals shown in this Attachment are those identified as surface water and sediment COPECs in the impacted reach of EBOR.

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.55

Incremental Risk for the Eastern small-footed bats at the EBOR

Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site Vershire, VT

			No	Effect		Effect						
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals				-					·			
Aluminum		***								***		1
Antimony	0.02	0.05	0.003	0.05	<1	<1	0.005	0.01	0.001	0.01	<1	<1
Arsenic	0.1	0.1	0.1	0.1	<1	<1	0.05	0.03	0.03	0.05	<1	<1
Barium	1.5	0.7	3.0	1.3	<1	<1	0.3	0.1	0.6	0.3	<1	<1
Beryllium	0.4	0.1	0.3	0.2	<1	<1	0.1	0.02	0.07	0.03	<1	<1
Cadmium [^]	-0.01	0.003	0.04	2.81E-04	<1	<1	-0.004	0.002	0.03	2.02E-04	<1	<1
Chromium	0.2	0.1	0.2	0.1	<1	<1	0.03	0.02	0.04	0.02	<1	<1
Cobalt	13	1.7	0.5	0.2	13	1.5	2.6	0.3	0.1	0.05	2.5	<1
Copper	13	7.9	0.4	0.3	13	7.6	10	6.1	0.3	0.2	10	5.9
Iron				**		-				==	-	
Lead	0.02	0.01	0.02	0.01	<1	<1	0.01	0.004	0.01	0.01	<1	<1
Manganese	2.4	1.8	2.4	1.4	<1	<1	0.7	0.6	0.7	0.4	<1	<1
Mercury (inorganic)	4.35E-04	0.001	0.001	3.61E-04	<1	<1	1.03E-04	1.48E-04	1.27E-04	8.50E-05	<1	<1
Molybdenum	0.4	0.4	0.1	0.1	<1	<1	0.1	0.1	0.01	0.01	<1	<1
Nickel	0.4	0.3	0.2	0.2	<1	<1	0.3	0.2	0.2	0.1	<1	<1
Selenium	0.4	1.5	14	1.9	<1	<1	0.1	0.5	4.8	0.6	<1	<1
Silver	0.002	0.003	0.001	0.003	<1	<1	4.07E-04	0.001	2.00E-04	0.001	<1	<1
Strontium			## PP	***						***	- 1	
Thallium	43	14	55	28	<1	<1	8.6	2.8	11	5.7	<1	<1
Vanadium	9.3	1.8	6.2	2.0	3.1	<1	6.6	1.3	4.4	1.4	2.2	<1
Zinc	0.3	0.2	0.2	0.1	<1	<1	0.1	0.1	0.08	0.05	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

^{^ -} The regression equation used to calculate the cadmium BSAF produced a negative value and therefore a negative HQ.

^{-- -} Not Available

Attachment 7.75: Weight-of-Evidence Integration for Insectivorous Mammals Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 6:

Maintain stable and healthy insectivorous mammal populations

Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of the insectivorous mammal populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

Measurement Endpoint

6.A: Use sediment analytical data to estimate the body residues of COPECs in winged aquatic insects; use food chain modeling to calculate daily doses from the ingestion of surface water and winged aquatic insects, and compare these values to TRVs.

Weight-of-Evidence Integration

Schoolhouse Brook	· · · · · · · · · · · · · · · · · · ·	WEIGHT OF EVIDENCE								
	HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High				
	Yes/High		6.A							
	Yes/Low									
	Undeterminate									
	No Harm									

The EBOR		WEIGHT OF EVIDENCE								
	HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High				
	Yes/High		6.A							
	Yes/Low									
	Undeterminate									
	No Harm									

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the insectivorous mammal populations is discussed in Section 7 of the BERA

Attachment 7.76 Hazard Quotients for Belted Kingfisher COPECs at School House Brook Ely Mine Superfund Site, Vershire, VT

,		RME	Scenario				CTE S	cenario		
	Total EDD ¹	TRV	TRV	No Effect	Effect	Total EDD ¹	TRV	TRV	No Effect	Effect
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ
Metals						(**************************************				
Aluminum	1.00E+02					5.74E+01			Ne pe	
Antimony	3.17E-01	na de la composition de la composition La composition de la composition della compos				1.38E-01				
Arsenic	1.33E-01	5.5	22	0.02	0.01	1.28E-01	5.5	22	0.02	0.01
Barium	9.47E+00	208	416	0.05	0.02	5.84E+00	208	416	0.03	0.01
Beryllium	1.98E-02			10.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00	***************************************	9.45E-03			MR SIE	
Cadmium	1.66E-01 ·	1.9	21.1	0.1	0.01	1.66E-01	1.9	21.1	0.1	0.01
Chromium	1.41E+00	37.7	75.4	0.04	0.02	1.17E+00	37.7	75.4	0.03	0.02
Cobalt	6.58E+00	7.61	38.1	0.9	0.2	2.17E+00	7.61	38.1	0.3	0.1
Copper	5.01E+01	33	62	1.5	0.8	2.99E+01	33	62	0.9	0.5
Iron	3.62E+02			W 69		1.04E+02	AND THE STREET OF THE STREET O		# ==	***
Lead	4.21E-01	7.4	37	0.1	0.01	6.23E-02	7.4	37	0.01	0.002
Manganese	2.87E+01	977	4885	0.03	0.01	1.99E+01	977	4885	0.02	0.004
Mercury	1.79E-02	0.45	0.91	0.04	0.02	1.28E-02	0.45	0.91	0.03	0.01
Molybdenum	3.08E-01	7.1	35.3	0.04	0.01	2.14E-01	7.1	35.3	0.03	0.01
Nickel	2.40E+00	80	107	0.03	0.02	1.54E+00	80	107	0.02	0.01
Selenium	5.26E-01	0.4	0.8	1.3	0.7	3.92E-01	0.4	0.8	1.0	0.5
Silver	6.93E-03	14.5	43.6	4.78E-04	1.59E-04	9.48E-03	14.5	43.6	0.001	2.18E-04
Strontium	1.65E+01	600 and		## 1M		1.51E+01	100 Her		## 19#	600 MM
Vanadium	2.79E+00	11.38	56.9	0.2	0.05	1.43E+00	11.38	56.9	0.1	0.03
Zinc	4.16E+01	14.5	131	2.9	0.3	3.54E+01	14.5	131	2.4	0.3

Note: The metals shown in this Attachment are those identified as surface water, fish, and sediment COPECs in the impacted reach of School House Brook. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.56

Created by: RAR 5/12/2008 QC'd by: EK 5/15/2008

Attachment 7.77 Hazard Quotients for Belted Kingfisher COPECs at the Reference Section of School House Brook Ely Copper Mine Superfund Site, Vershire, VT

		RME S	cenario			•	CTE	Scenario	•	
,	Total EDD1	TRV	TRV	No Effect	Effect	Total EDD1	TRV	TRV	No Effect	Effect
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ	(mg/kg bw-day)	NOAEL	LOAEL	HQ	HQ
Metals		1								
Aluminum	110				W 20	62.2				
Antimony	0.04					0.09				==
Arsenic	0.13	5.5	22	0.02	0.01	0.13	5.5	22	0.02	0.01
Barium	11.7	208	416	0.06	0.03	5.2	208	416	0.02	0.01
Beryllium	0.02					0.01		***		. ***
Cadmium	0.41	1.9	21.1	0.2	0.02	0.17	1.9	21.1	0.09	0.01
Chromium	2.8	37.7	75.4	0.07	0.04	1.4	37.7	75.4	0.04	0.02
Cobalt	1.0	7.61	38.1	0.1	0.03	0.42	7.61	38.1	0.06	0.01
Copper	2.7	33	62	0.08	0.04	1.3	33	62	0.04	0.02
Iron	144			wa.		55.6				
Lead	18.2	7.4	37	2.5	0.5	11.6	7.4	37	1.6	0.3
Manganese	27.8	977	4,885	0.03	0.01	20.0	977	4,885	0.02	0.004
Mercury	0.04	0.45	0.91	0.1	0.05	0.03	0.45	0.91	0.06	0.03
Molybdenum	0.13	7.1	35.3	0.02	0.004	0.15	7.1	35.3	0.02	0.004
Nickel	2.3	80	107	0.03	0.02	1.6	80	107	0.02	0.01
Selenium	0.22	0.4	0.8	. 0.5	0.3	0.20	0.4	0.8	0.5	0.2
Strontium	20.0					17.8				
Thallium	1.1					0.26				***
Vanadium	2.3	11.38	56.9	0.2	0.04	1.2	11.38	56.9	0.1	0.02
Zinc	38.3	14.5	131	2.6	0.3	22.7	14.5	131	1.6	0.2

Note: The metals shown in this Attachment are those identified as surface water, fish, and sediment COPECs in the impacted reach of School House Brook.

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.57

Created by: RAR 5/12/2008 QC'd by: EK 5/14/2008

Attachment 7.78 Incremental Risk for Belted Kingfishers at School House Brook Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site Vershire, VT

			No Effe	ct Scenario					Effect S	cenario		
		Hazard	Quotient		Incremer	ntal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum		100 MB							300, 300			
Antimony											-	
Arsenic	0.02	0.02	0.02	0.02	<1	<1	0.01	0.01	0.01	0.01	<1	<1
Barium	0.05	0.03	0.1	0.02	<1	<1	0.02	0.01	. 0.03	0.01	<1	<1
Beryllium		02 to					No 165	***	AND THE STREET, STREET	THE 460		
Cadmium	0.1	0.1	0.2	0.1	<1	<1	0.01	0.01	0.02	0.01	<1	<1
Chromium	0.04	0.03	0.1	0.04	<1	<1	0.02	0.02	0.04	0.02	<1	<1
Cobalt	0.9	0.3	0.1	0.1	<1	<1	0.2	0.06	0.03	0.01	<1	<1
Copper	1.5	0.9	0.1	0.04	1.4	<1	0.8	0.5	0.04	0.02	<1	<1
Iron			40 M						***	34 66		
Lead	0.1	0.01	2.5	1.6	<1	<1	0.01	0.002	0.5	0.3	<1	<1
Manganese	0.03	0.02	0.03	0.02	<1	<1	0.01	0.004	0.01	0.004	<1	<1
Mercury (inorganic)	0.04	0.03	0.1	0.1	<1	<1	0.02	0.01	0.05	0.03	<1	<1
Molybdenum	0.04	0.03	0.02	0.02	<1	<1	0.01	0.01	0.004	0.004	<1	<1
Nickel	0.03	0.02	0.03	0.02	<1	<1	0.02	0.01	0.02	0.01	<1	<1
Selenium	1.3	1.0	0.5	0.5	<1	<1	0.7	0.5	0.3	0.2	<1	<1
Silver	4.78E-04	6.54E-04	0.05	0.05	<1	<1	1.59E-04	2.18E-04	0.02	0.02	<1	<1
Strontium		PAR NO.	==				***		W W	300 400		
Vanadium	0.2	0.1	0.2	0.1	<1	<1	0.05	0.03	0.04	0.02	<1	<1
Zinc	2.9	2.4	2.6	1.6	<1	<1	0.3	0.3	0.3	0.2	<1	<1

COPEC - Chemical of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.79 Hazard Quotients for the Belted Kingfisher COPECs at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME	Scenario				CTE So	cenario		·
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals										
Aluminum	1.18E+02			300 TAT	w.e-	6.47E+01				**
Antimony	6.30E-02					9.34E-02			***	**
Arsenic	1.54E-01	5.5	22	0.03	0.01	1.33E-01	5.5	22	0.02	0.01
Barium	8.33E+00	208	416	0.04	0.02	4.60E+00	208	416	0.02	0.01
Beryllium	2.22E-02	ens ens		####	W 15	7.79E-03	wa.ess			
Cadmium	9.19E-02	1.9	21.1	0.05	0.004	1.77E-01	1.9	21.1	0.1	0.01
Chromium	1.65E+00	37.7	75.4	0.04	0.02	1.05E+00	37.7	75.4	0.03	0.01
Cobalt	8.57E+00	7.61	38.1	1.1	0.2	1.15E+00	7.61.	38.1	0.2	0.03
Copper	1.36E+01	33	62	0.4	0.2	7.93E+00	33	62	، 0.2	0.1
Iron	1.63E+02					8.25E+01		*	44 64	==
Lead	3.63E-02	7.4	37	0.005	0.001	1.99E-02	7.4	37	0.003	0.001
Manganese	2.32E+01	977	4,885	0.02	0.005	1.72E+01	977	4,885	0.02	0.004
Mercury	1.87E-02	0.45	0.91	0.04	0.02	1.50E-02	0.45	0.91	0.03	0.02
Molybdenum	2.03E-01	7.1	35.3	0.03	0.01	1.88E-01	7.1	35.3	0.03	0.01
Nickel	2.32E+00	80	107	0.03	0.02	1.45E+00	80	107	0.02	0.01
Selenium	1.86E-01	0.4	0.8	0.5	0.2	2.41E-01	0.4	0.8	0.6	0.3
Silver	7.98E-03	14.5	43.6	0.001	1.83E-04	1.02E-02	14.5	43.6	0.001	2.35E-04
Strontium	1.50E+01	***		###	w m	1.50E+01			24	
Thallium	7.70E-01	## ##		₽ ₩	m m	2.61E-01	****		900 600	
Vanadium	4.94E+00	11.38	56.9	0.4	0.1	1.03E+00	11.38	56.9	0.1	0.02
Zinc	4.09E+01	14.5	131	2.8	0.3	3.22E+01	14.5	131	2.2	0.2

Note: The metals shown in this Attachment are those identified as surface water, fish, and sediment COPECs in the impacted reach of the EBOR.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

- --- A hazard quotient could not be calculated because no TRV was available.
- 1 Total EDD is calculated in Attachmen 5.58

Created by: RAR 5/9/2008 QC'd by: EK 5/15/2008

Attachment 7.80 Hazard Quotients for the Belted Kingfisher COPECs at the Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME S	Scenario		:		CTE Se	cenario		
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals									<u> </u>	
Aluminum	5.65E+01					4.71E+01				
Antimony	7.29E-02	**************************************	***************************************	## ##		1.02E-01	## 			***
Arsenic	1.45E-01	5.5	22	0.03	0.01	1.58E-01	5.5	22	0.03	0.01
Barium	1.54E+01	208	416	0.07	0.04	7.37E+00	208	416	0.04	0.02
Beryllium	2.02E-02		## ##	==		1.15E-02	**************************************			
Cadmium	3.86E-01	1.9	21.1	0.20	0.02	1.44E-01	1.9	21.1	0.1	0.01
Chromium	1.97E+00	37.7	75.4	0.05	0.03	1.19E+00	37.7	75.4	0.03	0.02
Cobalt	3.43E-01	7.61	38.1	0.05	0.01	1.69E-01	7.61	38.1	0.02	0.004
Copper	1.11E+00	33	62	0.03	0.02	6.91E-01	33	62	0.02	0.01
Iron	5.94E+01			600 MP		4.62E+01	ennes en grangen i (10 km 1964 Meiste i 11 februaria) i de en	### ###	NA 100	***************************************
Lead	3.02E-02	7.4	37	0.004	0.001	2.53E-02	7.4	37	0.003	0.001
Manganese	2.25E+01	977	4885	0.02	0.005	1.46E+01	977	4885	0.01	0.003
Mercury	2.22E-02	0.45	0.91	0.05	0.02	1.83E-02	0.45	0.91	0.04	0.02
Molybdenum	1.19E-01	7.1	35.3	0.02	0.003	1.19E-01	7.1	35.3	. 0.02	0.003
Nickel	1.45E+00	80	107	0.02	0.01	1.05E+00	80	107	0.01	0.01
Selenium	1.34E+00	0.4	0.8	3.3	1.7	2.82E-01	0.4	0.8	0.7	0.4
Silver	3.92E-03	14.5	43.6	2.70E-04	8.99E-05	1.07E-02	14.5	43.6	0.001	2.45E-04
Strontium	1.54E+01			———		1.54E+01	**************************************			mm
Thallium	9.76E-01					5.10E-01	,——		90 M	
Vanadium	3.30E+00	11.38	56.9	0.3	0.06	1.09E+00	11.38	56.9	0.1	0.02
Zinc	3.62E+01	14.5	131	2.5	0.3	3.16E+01	14.5	131	2.2	0.2

Note: The metals shown in this Attachment are those identified as surface water, fish, and sediment COPECs in the east branch of the Ompompanoosuc River.

mg/kg - milligrams per kilogram

ug/L - micrograms per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

-- - A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.59

Created by: RAR 5/12/2008 QC'd by: EK 5/15/2008

Attachment 7.81

Incremental Risk for the Belted Kingfishers at the EBOR Baseline Ecological Risk Assessment

Ely Copper Mine Superfund Site Vershire, VT

			No	Effect					Eff	ect		
		Hazard	l Quotient		Incremer	ntal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals					100							
Aluminum		100 miles		100 PM					mas desk	. 186 846		
Antimony								***	Per cas	==		
Arsenic	0.03	0.02	0.03	0.03	<1	<1	0.01	0.01	0.01	0.01	<1	<1
Barium	0.04	0.02	0.1	0.04	<1	<1	0.02	0.01	0.04	0.02	<1	<1
Beryllium	Marie All Company of Company C		en e	THE RESIDENCE OF THE PROPERTY					**************************************			
Cadmium	0.05	0.1	. 0.2	0.1	<1	<1	0.004	0.01	0.02	0.01	<1	<1
Chromium	0.04	0.03	0.1	0.03	<1	<1	0.02	0.01	0.03	0.02	<1	<1
Cobalt	1.1	0.2	0.05	0.02	1	<1	0.2	0.03	0.01	0.004	<1	<1
Copper	0.4	0.2	0.03	0.02	<1	<1	0.2	0.1	0.02	0.01	<1	<1
Iron	MA NO.		***	NOT NOT				mb mb	200 MB	500 mile		
Lead	0.005	0.003	0.004	0.003	<1	<1	0.001	0.001	0.001	0.001	<1	<1
Manganese	0.02	0.02	0.02	0.01	<1	<1	0.005	0.004	0.005	0.003	<1	<1
Mercury	0.04	0.03	0.05	0.04	<1	<1	0.02	0.02	0.02	0.02	<1	<1
Molybdenum	0.03	0.03	0.02	0.02	<1	<1	0.01	. 0.01	0.003	0.003	<1	<1
Nickel	0.03	0.02	0.02	0.01	' <1	<1	0.02	0.01	0.01	0.01	<1	<1
Selenium	0.5	0.6	3.3	0.7	<1	<1	0.2	0.3	1.7	0.4	<1	<1
Silver	0.001	0.001	2.70E-04	0.001	<1	<1	1.83E-04	2.35E-04	8.99E-05	2.45E-04	<1	<1
Strontium				***				***	## ea	## ##		
Thallium	and 200	***						***				
Vanadium	0.4	0.1	0.3	0.1	<1	<1	0.1	0.02	0.06	0.02	<1	<1
Zinc	2.8	2.2	2.5	2.2	<1	<1	0.3	0.2	0.3	0.2	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

-- - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.82: Weight-of-Evidence Integration for Piscivorous Birds Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 7:

Maintain stable and healthy piscivorous bird populations

Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of the piscivorous bird populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

Measurement Endpoint

7.A: Use food chain modeling to calculate the mean and maximum daily doses to belted kingfishers from ingesting surface water and fish, and compare these values to TRVs

Weight-of-Evidence Integration

Schoolhouse Brook			WEIG	HT OF EVID	ENCE					
		Low - Medium -								
HARM/MAGNIT	UDE	Low	Medium	Medium	High	High				
. Yes/	High									
Yes	/Low[
Undetermi	inate									
No H	larm	arm 7.A								

The EBOR		WEIG	HT OF EVID	ENCE	
		Low -		Medium -	
HARM/MAGNITUDE	Low	Medium	Medium	High	High
Yes/High	1.	·			
Yes/Low					
Undeterminate					
No Harm			7.A		

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the piscivorous bird populations is discussed in Section 7 of the BERA

Attachment 7.83 Hazard Quotients for Mink COPECs at School House Brook

Ely Copper Mine Superfund Site, Vershire, VT

•		RME	Scenari	0	1		CTE	Scenario		***************************************
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals					1				•	
Aluminum	2.52E+00					1.17E+00		<u> </u>		**
Antimony	7.99E-02	13.3	66.5	0.01	0.001	2.46E-02	13.3	66.5	0.002	3.70E-04
Arsenic	2.99E-02	5.7	11.6	0.01	0.003	3.31E-02	5.7	11.6	0.006	0.003
Barium	4.63E-01	51.8	259	0.01	0.002	3.58E-01	51.8	259	0.007	0.001
Cadmium	7.56E-03	5.1	7.1	0.001	0.001	4.23E-03	5.1	7.1	8.29E-04	5.96E-04
Chromium	9.17E-03	8.8	44.2	0.001	2.08E-04	7.08E-03	8.8	44.2	8.05E-04	1.60E-04
Cobalt	2.26E-02	7.3	36.7	0.003	6.16E-04	1.18E-02	7.3	36.7	0.002	3.20E-04
Copper	1.60E+00	11.7	15.1	0.1	0.1	9.23E-01	11.7	15.1	0.08	0.1
Iron	9.41E+00			. AND SOC		6.97E+00				
Lead	2.34E-01	34	80	0.01	0.003	2.99E-02	34	80	8.78E-04	3.73E-04
Manganese	8.51E-01	88	284	0.01	0.003	7.23E-01	88	284	0.01	0.003
Mercury	1.06E-03	13.2	56	8.06E-05	1.90E-05	6.46E-04	13.2	56	4.90E-05	1.15E-05
Molybdenum	2.99E-02	2.6	13	0.01	0.002	3.01E-02	2.6	13	0.01	0.002
Nickel	4.02E-02	60	80	0.001	5.03E-04	3.47E-02	60	80	5.78E-04	4.33E-04
Selenium	5.77E-02	0.35	1.05	0.2	0.05	4.69E-02	0.35	1.05	0.1	0.04
Silver	6.63E-05	44.4	222	1.49E-06	2.99E-07	9.62E-05	44.4	222	2.17E-06	4.33E-07
Strontium	1.58E-02					1.41E-02		***		wa au
Vanadium	2.00E-02	5.9	8.3	0.003	0.002	2.02E-02	5.9	8.3	0.003	0.002
Zinc	8.16E+00	160	320	0.1	0.03	6.81E+00	160	320	0.04	0.02

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the impacted reach of School House Brook.

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

TRV - Toxicity Reference Value

HQ - Hazard Quotient

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.60

Attachment 7.84
Hazard Quotients for Mink COPECs in the Reference Section of School House Brook
Ely Copper Mine Superfund Site, Vershire, VT

		RME S	cenario				CTE S	Scenario		
ļ	Total EDD ¹	TRV	TRV	No Effect	······································	Total EDD ¹	TRV	TRV	No Effect	
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	HQ	Effect HQ
Metals										
Aluminum	5.35E+00			No. top		1.88E+00				100 100
Antimony	9.98E-03	13.3	66.5	7.51E-04	1.50E-04	1.11E-02	13.3	66.5	8.34E-04	1.67E-04
Arsenic	2.99E-02	5.7	11.6	0.005	0.003	3.31E-02	5.7	11.6	0.006	0.003
Barium	2.27E-01	51.8	259	0.004	8.78E-04	1.18E-01	51.8	259	0.002	4.54E-04
Cadmium	8.62E-03	5.1	7.1	0.002	0.001	5.34E-03	5.1	7.1	0.001	7.52E-04
Chromium	1.11E-02	8.8	44.2	0.001	2.50E-04	8.47E-03	8.8	44.2	9.63E-04	1.92E-04
Cobalt	1.20E-02	7.3	36.7	0.002	3.28E-04	8.68E-03	7.3	36.7	0.001	2.36E-04
Copper	3.79E-01	11.7	15.1	0.03	0.03	2.88E-01	11.7	15.1	0.02	0.02
Iron	7.55E-02			MM 404	we we	2.01E-02				
Lead	1.21E+01	34	80	0.4	0.2	7.70E+00	34	80	0.2	0.1
Manganese	1.22E+00	88	284	0.01	0.004	7.62E-01	88	284	0.009	0.003
Mercury	3.00E-03	13.2	56	2.27E-04	5.36E-05	1.79E-03	13.2	56	1.35E-04	3.19E-05
Molybdenum	3.00E-02	2.6	13	0.01	0.002	3.00E-02	2.6	13	0.01	0.002
Nickel	4.00E-02	60	80	6.66E-04	5.00E-04	2.86E-02	60	80	4.77E-04	3.58E-04
Selenium	7.98E-02	0.35	1.05	0.2	0.08	6.34E-02	0.35	1.05	0.2	0.06
Silver	2.48E-04	44.4	222 [.]	5.57E-06	1.11E-06	4.32E-05	44.4	222	9.72E-07	1.94E-07
Strontium	1.67E-02		*****		***	1.37E-02	20-00		===	
Vanadium	4.00E-02	5.9	8.3	0.007	0.005	2.86E-02	5.9	8.3	0.005	0.003
Zinc	6.77E+00	160	320	0.04	0.02	4.87E+00	160	320	0.03	0.02

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the impacted reach of School House Brook. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

TRV - Toxicity Reference Value

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

-- - A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachmen 5.61

Attachment 7.85 Incremental Risk for Mink at School House Brook Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			No Effe	ct Scenario					Effect S	cenario		
	-	Hazard	Quotient		Incremen	ntal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPEC	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum			****				e 10	w m				
Antimony	0.01	0.002	0.001	0.001	<1	<1	0.001	3.70E-04	1.50E-04	1.67E-04	<1	<1
Arsenic	0.01	0.01	0.01	0.01	<1	<1	0.003	0.003	0.003	0.003	<1	<1
Barium	0.01	0.01	0.004	0.002	<1	<1	0.002	0.001	0.001	4.54E-04	<1	<1
Cadmium	1.48E-03	8.29E-04	0.002	0.001	<1	<1	0.001	5.96E-04	0.001	0.001	<1	<1
Chromium	1.04E-03	8.05E-04	0.001	0.001	<1	<1	2.08E-04	1.60E-04	2.50E-04	1.92E-04	<1	<1
Cobalt	0.003	0.002	0.002	0.001	<1	<1	6.16E-04	3.20E-04	3.28E-04	2.36E-04	<1	<1
Copper	0.1	0.08	0.03	0.02	<1	<1	0.1	0.1	0.03	0.02	<1	<1
Iron		and out					No Mir	Mile Mile		### \$## ********************************		
Lead	0.01	0.001	0.35	0.23	<1	<1	0.003	3.73E-04	0.2	0.1	<1	<1
Manganese	0.01	0.01	0.01	0.01	<1	<1	0.003	0.003	0.004	0.003	<1	<1
Mercury (inorganic)	8.06E-05	4.90E-05	2.27E-04	1.35E-04	<1	<1	1.90E-05	1.15E-05	5.36E-05	3.19E-05	<1	<1
Molybdenum	0.01	0.01	0.01	0.01	<1	<1	0.002	0.002	0.002	0.002	<1	<1
Nickel	6.71E-04	5.78E-04	0.001	4.77E-04	<1	<1	5.03E-04	4.33E-04	5.00E-04	3.58E-04	<1	<1
Selenium	0.2	0.1	0.2	0.2	<1	<1	0.05	0.04	0.08	0.06	<1	<1
Silver	1.49E-06	2.17E-06	5.57E-06	9.72E-07	<1	<1	2.99E-07	4.33E-07	1.11E-06	1.94E-07	<1	<1
Strontium			gengen og er er er er er er er en en en er				==	***			Same	
Vanadium	0.003	0.003	0.01	0.005	<1	<1	0.002	0.002	0.005	0.003	<1	<1
Zinc	0.05	0.04	0.04	0.03	<1	<1	0.03	0.02	0.02	0.02	<1	<1

COPEC - Chemical of Potential Ecological Concern

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.86 Hazard Quotients for Mink COPECs at the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME	Scenario		·		CTE	Scenario		·
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals								<u> </u>		
Aluminum	3.39E+00	*****				1.44E+00	***			
Antimony	1.01E-02	13.3	66.5	0.001	1.51E-04	1.10E-02	13.3	66.5	0.001	1.65E-04
Arsenic	2.99E-02	5.7	11.6	0.01	0.003	3.25E-02	5.7	11.6	0.01	0.00
Barium	4.79E-01	51.8	259	0.01	0.002	3.36E-01	51.8	259	0.01	0.001
Cadmium	7.55E-03	5.1	7.1	0.001	0.001	4.67E-03	5.1	7.1	0,001	0.001
Chromium	5.51E-03	8.8	44.2	0.001	1.25E-04	5.12E-03	8.8	44.2	0.001	1.16E-04
Cobalt	1.80E-02	7.3	36.7	0.002	4.91E-04	1.38E-02	7.3	36.7	0.002	3.76E-04
Copper	7.01E-01	11.7	15.1	0.06	0.05	, 4.18E-01	11.7	15.1	0.04	0.03
Iron	1.02E+01	400 400 		—	***	6.47E+00				===
Lead	8.02E-03	34	80	2.36E-04	1.00E-04	4.56E-03	34	80	1.34E-04	5.70E-05
Manganese	1.29E+00	88	284	0.01	0.005	9.30E-01	88	284	0.01	0.003
Mercury	1.12E-03	13.2	56	8.46E-05	1.99E-05	7.45E-04	13.2	56	5.65E-05	1.33E-05
Molybdenum	2.99E-02	2.6	13	0.01	0.002	3.00E-02	2.6	13	0.01	0.002
Nickel	4.00E-02	60	80	0.001	5.01E-04	2.90E-02	60	80	4.84E-04	3.63E-04
Selenium	5.74E-02	0.35	1.05	0.16	0.05	4.14E-02	0.35	1.05	0.1	0.04
Strontium	1.48E-02	int am	****	—————————————————————————————————————		1.28E-02	See see		100 mg	er se
Vanadium	2.00E-02	5.9	8.3	0.003	0.002	2.03E-02	5.9	8.3	0.003	0.002
Zinc	8.36E+00	160	320	0.1	0.03	6.72E+00	160	320	0.04	0.02

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the east branch of the Ompompanoosuc River. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

EBOR - East Branch of the Ompompanoosuc River

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

--- A hazard quotient could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachment 5.62

Attachment 7.87 Hazard Quotients for Mink COPECs at the Reference Section of the EBOR Ely Copper Mine Superfund Site, Vershire, VT

		RME	Scenario		T		СТЕ	Scenario		·
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Metals			<u> </u>		1					
Aluminum	1.81E+00					1.29E+00	****			—
Antimony	2.00E-02	13.3	66.5	0.002	3.00E-04	1.42E-02	13.3	66.5	0.001	2.14E-04
Arsenic	3.98E-02	5.7	11.6	0.01	0.003	3.45E-02	5.7	11.6	0.01	0.003
Barium	4.65E-01	51.8	259	0.01	0.002	4.32E-01	51.8	259	0.01	0.002
Cadmium	4.56E-03	5.1	7.1	0.001	6.42E-04	3.08E-03	5.1	7.1	0.001	4.34E-04
Chromium	7.31E-03	8.8	44.2	0.001	1.65E-04	6.36E-03	8.8	44.2	0.001	1.44E-04
Cobalt	4.01E-03	7.3	36.7	0.001	1.09E-04	3.52E-03	7.3	36.7	4.82E-04	9.59E-05
Copper	4.19E-01	11.7	15.1	0.04	0.03	2.46E-01	11.7	15.1	0.02	0.02
Iron	6.71E+00	All States	- Deliga graphy and the graphy of the control of th	may say	. Im III	6.18E+00	And the Charles of th		***************************************	### \$500 \$200 \$100 \$100 \$100 \$100 \$100 \$100 \$100
Lead	6.03E-03	34	80	1.77E-04	7.54E-05	6.03E-03	34	80	1.77E-04	7.54E-05
Manganese	1.10E+00	88	284	0.01	0.004	1.06E+00	88	284	0.01	0.004
Mercury	1.30E-03	13.2	56	9.86E-05	2.32E-05	1.12E-03	13.2	56	8.48E-05	2.00E-05
Molybdenum	2.99E-02	2.6	13	0.01	0.002	3.00E-02	2.6 ·	13	0.01	0.002
Nickel	4.00E-02	60	80	0.001	5.00E-04	4.01E-02	60	80	0.001	0.001
Selenium	4.57E-02	0.35	1.05	0.1	0.04	4.55E-02	0.35	1.05	0.1	0.04
Strontium	1.95E-02	The party		May pay		1.32E-02			- 	
Vanadium	2.00E-02	5.9	8.3	0.003	0.002	2.00E-02	5.9	8.3	0.003	0.002
Zinc	8.48E+00	160	320	0.1	0.03	7.78E+00	160	320	0.05	0.02

Note: The metals shown in this Attachment are those identified as fish tissue and surface water COPECs in the east branch of the Ompompanoosuc River. mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

-- - A hazard quotientHQ could not be calculated because no TRV was available.

1 - Total EDD is calculated in Attachmen 5.63

Created by: RAR 5/1/2008 QC'd by: EK 5/13/2008

Attachment 7.88 Incremental Risk for the Mink at the EBOR Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site, Vershire, VT

			No	Effect					Eff	ect	T	
		Hazard	Quotient		Increme	ntal Risk*		Hazard	Quotient		Incremen	tal Risk*
COPECs	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE	Site-RME	Site-CTE	REF-RME	REF-CTE	RME	CTE
Metals												
Aluminum									***			
Antimony	0.001	0.001	0.002	0.001	<1	<1	1.51E-04	1.65E-04	3.00E-04	2.14E-04	<1	<1
Arsenic	0.01	0.01	0.01	0.01	<1	<1	0.003	0.003	0.003	0.003	<1	<1
Barium	0.01	0.01	0.01	0.01	<1	<1	0.002	0.001	0.002	0.002	<1	<1
Cadmium	0.001	0.001	0.001	0.001	<1	<1	0.001	0.001	0.001	4.34E-04	<1	<1
Chromium	0.001	0.001	0.001	0.001	<1	<1	1.25E-04	1.16E-04	1.65E-04	1.44E-04	<1	<1
Cobalt	0.002	0.002	0.001	4.82E-04	<1	<1	4.91E-04	3.76E-04	1.09E-04	9.59E-05	<1	<1
Copper	0.1	0.0	0.04	0.02	<1	<1	0.05	0.03	0.03	0.02	<1	<1
Iron	****	***	***************************************	A A A A A A A A A A A A A A A A A A A				==	***		-	
Lead	2.36E-04	1.34E-04	1.77E-04	1.77E-04	<1	<1	1.00E-04	5.70E-05	7.54E-05	7.54E-05	<1	<1
Manganese	0.01	0.01	0.01	0.01	<1	<1	0.005	0.003	0.004	0.004	<1	<1
Mercury (inorganic)	8.46E-05	5.65E-05	9.86E-05	8.48E-05	<1	<1	1.99E-05	1.33E-05	2.32E-05	2.00E-05	<1	<1
Molybdenum	0.01	0.01	0.01	0.01	<1	<1	0.002	0.002	0.002	0.002	<1	<1
Nickel	0.001	0.000	0.001	0.001	<1	<1	0.001	3.63E-04	5.00E-04	0.001	<1	<1
Selenium	0.2	0.1	0.1	0.1	<1	<1	0.05	0.04	0.04	0.04	<1	<1
Strontium			antigeness are now to the control of				**	We for	Marie Marie Marie Common Commo			
Vanadium	0.003	0.003	0.003	0.003	<1	<1	0.002	0.002	0.002	0.002	<1	<1
Zinc	0.1	0.0	0.1	0.05	<1	<1	0.03	0.02	0.03	0.02	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EBOR - East Branch of the Ompompanoosuc River

-- - Not Available

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

REF - Reference

^{* -} The incremental risk is the hazard quotient calculated for the Site minus the hazard quotient calculated for the reference area.

Attachment 7.89: Weight-of-Evidence Integration for Piscivorous Mammals Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Assessment Endpoint 8:

Maintain stable and healthy piscivorous mammal populations

Are the COPEC levels in surface water and biota sufficiently high to cause biologically-significant changes or impair the function of the piscivorous mammal populations foraging in the vicinity of Schoolhouse Brook and the EBOR?

Measurement Endpoint

8.A: Use food chain modeling to calculate the mean and maximum daily doses to mink from ingesting surface water and fish, and compare these values to TRVs

Weight-of-Evidence Integration

Schoolhouse Brook		WEIG	HT OF EVIC	ENCE	
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High
Yes/High					
Yes/Low					
Undeterminate					
No Harm			8.A		

The EBOR		WEIG	HT OF EVID	ENCE	
HARM/MAGNITUDE	Low	Low - Medium	Medium	Medium - High	High
Yes/High					
Yes/Low			-		
Undeterminate					
No Harm			8.A		

Assessment endpoints, measurement endpoints, and assigned weights are discussed in Section 4 of the BERA The WOE integration for the piscivorous mammal populations is discussed in Section 7 of the BERA

•		
		*
Table 7.90: Ov	rerview of the major uncertainties associated with the risk characterization for the Ely Coppe	er Mine BERA
		·
Measurement Endpoint	Qualitative Description of Uncertainty	Potential Effect on Risk
	BENTHIC INVERTEBRATE COMMUNITY	
Measurement endpoint 1.A:	The sampling locations can affect contaminant levels. Sediment samples were collected	No effect on risk
Compare COPEC levels in	throughout the waterways, including depositional areas, over several years. It is unlikely that	
bulk sediment to benchmarks	"hotspots" were missed.	
	The toxicity-based, literature-derived sediment benchmarks were generic but conservative values	Up to moderate
	which did not consider site-specific factors (e.g., AVS/SEM, TOC, other binding phases) that may	
	affect bioavailability in-situ.	
	HQs were only calculated for individual COPECs, without considering the potential for cumulative	Small underestimation of
	risk from multiple COPECs.	risk
	Digesting sediment samples with strong acid prior to chemical analyses did not liberate COPECs	Moderate overestimation o
	in a way which mimicked the exposure experienced by benthic invertebrates in the field.	risk
	Sediment benchmarks were available for all the COPECs.	Minimal effect on risk
	The sediment benchmarks did not account for low pH surface water or pore water that may affect	Up to moderate
	benthic invertebrates at certain times of the year, independent from the COPEC levels in the	underestimation of risk
*	substrate.	,
	Most of the substrate in the affected waterways consisted mainly of sand, gravel, and boulders.	Unknown effect on risk
	Much of the benthos was expected to live under rocks and in small crevices where exposure	
•	would be to COPECs in surface water, more than in pore water or bulk sediment.	
	Overall potential effect on ecological risk	Moderate overestimation
Measurement endpoint 1.B:	Pore water chemistry varies by season, location, surface water quality, and substrate conditions.	Moderate to severe
Compare dissolved COPEC	Only a few pore water samples were collected during low (summer) flow from each waterway.	underestimation of risk (bu
levels in pore water to	Such samples were unlikely to represent the full range of pore water conditions.	only during high flow)
benchmarks.	·	
	Toxicity-based surface water benchmarks from the literature represented generic but	Small overestimation of rist
	conservative values protective of a small fraction of the most sensitive species.	
		Small underestimation of
	<u></u>	risk
	Surface water benchmarks were available for all of the COPECs.	Minimal effect on risk
	Dissolved metals data were compared to the benchmarks. Dissolved metals represent the	Minimal effect on risk
	fraction responsible for toxicity in aquatic receptors.	
	The surface water benchmarks do not account for low pH surface water or pore water that may	Up to moderate
	affect benthic invertebrates at certain times of the year independent from the COPEC levels in	underestimation of risk
	the substrate.	
	Overall potential effect on ecological risk	
	AVS and SEM can vary by season to to changes in water flow and temperature. Samples were	underestimation
Measurement endpoint 1.C: Estimate COPEC	collected mostly in the summer and fall.	Unknown effect on risk
pioavailability based on AVS		Un to amall assessed as attendates
and SEM.		Up to small overestimation of risk
	with the state of	OI HON
	AVS > SEM does not necessarily indicate the presence of toxicity (EPA, 2005b)	small to moderate
	PAYS > SEW GOES HOLDECESSAINS INDICATE THE PRESENCE OF LOXICITY (EPA, 20050)	overestimation of risk
		small to moderate
	Overall potential effect on ecological risk evaluation	overestimation
		or a countauti

Table 7.90: Ov	erview of the major uncertainties associated with the risk characterization for the Ely Copp	er Mine BERA
Measurement Endpoint	Qualitative Description of Uncertainty	Potential Effect on Risk
Measurement endpoint 1.D: Toxicity testing of juvenile H. azteca and C. tentans exposed to pore water in the	Pore water chemistry varies by season, location, surface water quality, and substrate conditions. Only a few pore water samples were collected during summer base flow from each waterway. These samples were unlikely to represent the full range of pore water conditions.	Moderate to severe underestimation of risk (but only during high flow)
laboratory.	Contaminant sensitivity is species-specific. <i>H. azteca</i> is considered relatively sensitive to metals; <i>C. tentans</i> less so. It is not known how the response of <i>H. azteca</i> to metals compares to that of sensitive local benthic invertebrates in the waterways.	Unknown effect on risk
	Using sensitive juvenile life stages increased the chances of detecting toxicity, whereas the short duration of the test (96 hours) decreased the chances of detecting longer-term impacts, such as on growth or reproduction.	Moderate underestimation of risk
	A white floc was observed in the pore water samples used for the daily renewals. It seemed likely that changes in water chemistry caused dissolved metals to precipitate out of solution thereby affecting the measured pore water toxicity.	Small underestimation of risk
	Overall potential effect on ecological risk	Moderate to severe underestimation
Measurement endpoint 1.E: Toxicity testing of <i>H. azteca</i> and <i>C. tentans</i> exposed to	The sampling locations can affect contaminant levels. Sediment samples were collected from the few available depositional areas in each waterway which are more likely to accumulate metals in sediment.	Overestimation of risk by focusing on the few depositional areas
sediment in the laboratory.	Contaminant sensitivity is species-specific. <i>H. azteca</i> is considered relatively sensitive to metals; <i>C. tentans</i> less so. It was not known how the response of <i>H. azteca</i> to metals compared to that of sensitive local benthic invertebrates in the waterways.	Unknown effect on risk
	The conditions in the test beakers were different from those found <i>in-situ</i> . The coarse nature of the sediment and the more settled conditions in the beakers could have allowed metals to more readily dissociate from the sediment and accumulate in the pore water. On the other hand, changes in chemistry could have caused those metals to precipitate out of solution and become less bioavailable.	Unknown effect on risk
	Using sensitive juvenile life stages increased the chances of detecting toxicity, whereas the relatively short duration of the test (28 days for <i>H. azteca</i> and 10 days for <i>C. tentans</i>) decreased the chances of detecting long-term effects, such as on reproduction.	Small underestimation of risk
	Overall potential effect on ecological risk	Up to moderate overestimation
Measurement endpoint 1.F: Benthic community surveys.	Benthic invertebrate surveys can generate results which are highly variable and difficult to interpret. The fact that the surveys were performed using approved sampling and statistical analyses protocols minimized these concerns.	Minimal effect on risk
	The survey occurred during summer base flow when the surface and pore water are least toxic. However, the structure of the benthic community at the sampling locations represents a chronic response of chemical conditions integrated over time.	Minimal effect on risk
· .	The published benthic community metrics used in the field data interpretation were obtained from VT streams with physical and hydrologic characteristics similar to those found in the waterways at the Site.	
	Overall potential effect on ecological risk	Risk was as reported

Table 7.90: Ov	erview of the major uncertainties associated with the risk characterization for the Ely Coppo	er Mine BERA
Measurement Endpoint	Qualitative Description of Uncertainty	Potential Effect on Risk
	WATER COLUMN INVERTEBRATE COMMUNITY IN THE PONDS	
Measurement endpoint 2.A: compare surface water COPECs to benchmarks.	Surface water chemistry varies significantly by season and location. Surface water samples were collected mainly in May and June. The surface water data sets for the ponds likely did not represent the full range of surface water conditions experienced by water column invertebrates in these habitats.	Small to moderate underestimation of risk (but only during high flow)
·	Toxicity-based surface water benchmarks from the literature represented generic but conservative values protective of a small fraction of the most sensitive species.	Small overestimation of risk
	HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs	Small underestimation of risk
	Toxicity-based surface water benchmarks were available for all of the COPECs.	No effect on risk
	Dissolved metals data were compared to the benchmarks. Dissolved metals represent the fraction responsible for toxicity in aquatic receptors.	Minimal effect on risk
	The surface water benchmarks do not account for low pH conditions that may have affected water column invertebrates at certain times of the year, independent from the COPEC levels in the surface water	Moderate underestimation of risk
	Overall potential effect on ecological risk	Moderate underestimation
	FISH COMMUNITY	· ·
Measurement endpoint 3.A: Compare dissolved COPEC levels in surface water to benchmarks.	Surface water chemistry varies significantly by season and location. However, numerous surface water samples were collected from the three streams between March and November over several years. The surface water data sets reflect the full range of chemical conditions experienced by fish in these habitats.	minimal effect on risk
	Toxicity-based surface water benchmarks from the literature represented generic but conservative values protective of a small fraction of the most sensitive species.	Small overestimation of risk
	HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs.	Small underestimation of risk
	Toxicity-based surface water benchmarks were available for all of the COPECs.	Minimal effect on risk
	Dissolved metals data were compared to the benchmarks. Dissolved metals represent the fraction responsible for toxicity in aquatic receptors.	Minimal effect on risk
	The surface water benchmarks did not account for low pH conditions that may affect water column invertebrates at certain times of the year, independent from the COPEC levels in the surface water.	Up to moderate underestimation of risk
	Overall potential effect on ecological risk	Small to moderate underestimation
Measurement endpoint 3.B: Expose juvenile fathead minnows (<i>P. promelas</i>) to surface water in the	Surface water chemistry varies by season and location. The surface water samples were collected over three days in late June 2006. These samples did not represent the full range of surface water conditions in the ponds and the waterways.	Up to severe underestimation of risk (but only during high flow)
laboratory.	Contaminant sensitivity is species-specific. <i>P. promelas was</i> considered relatively sensitive to metals. It was not known how the response of <i>P. promelas</i> compared to that of sensitive local fish species in the waterways.	Unknown effect on risk
	Using sensitive juvenile life stages increased the chances of detecting toxicity, whereas the short duration of the test (7 days) decreased the chances of detecting long-term impacts, such as on reproduction.	risk
	A white floc was observed in the surface water samples used for the daily renewals. It was likely that changes in water chemistry caused dissolved metals to precipitate out of solution thereby affecting the toxicity of the pore water.	Small underestimation of risk
	Overall potential effect on ecological risk	Moderate underestimation

Table 7.90: Ov	erview of the major uncertainties associated with the risk characterization for the Ely Copp	er Mine BERA
Measurement Endpoint	Qualitative Description of Uncertainty	Potential Effect on Risk
Measurement endpoint 3.C: Compare COPEC levels in	The metal residues in fish collected from the affected waterways reflected chronic exposures to COPECs in surface water, sediment, and food integrated over time.	Minimal effect on risk
fish tissue to CBRs.	Fish with excessively high body burdens of metals may have died and would have been excluded from the tissue residue database.	Small to moderate underestimation of risk
	The CBRs were derived from published salmonid data (mostly rainbow trout). Brook trout are a target species in the affected waterways. It is unknown if other fish species (including blacknose dace) present in the affected waterways were more or less sensitive than rainbow trout.	Unknown effect on risk
	The CBRs were conservative values obtained from the literature. The geometric mean was used to calculate species-specific CBRs. The geometric mean of all of these species-specific geometric means was used to calculate the final CBRs. This approach was conservative.	moderate overestimation of risk
	HQs were only calculated for individual COPECs, without considering the potential for cumulative risk associated with the presence of multiple COPECs.	Small underestimation of risk
	Overall potential effect on ecological risk	Up to moderate overestimation
Measurement endpoint 3.D: Fish community survey	The survey occurred during summer base flow when the surface water was least toxic. However, the overall structure of the fish community at the sampling locations in the waterways represented a long-term, chronic response to chemical conditions integrated over multiple years.	Minimal to no effect on risk
	Fish composition can be underestimated if uncommon species are missed during sampling. This variable should only have had a minor effect on the data because Schoolhouse Brook and the EBOR represent relatively shallow and simple sampling habitats.	Minimal to no effect on risk
	The published fish community metrics used in the field data interpretation were obtained from VT streams with physical and hydrologic characteristics similar to those found in the waterways at the Site.	Minimal to no effect on risk
	Overall potential effect on ecological risk	Risk was as reported
<u> </u>	AMPHIBIAN POPULATIONS	
Measurement endpoint 4.A: Compare dissolved COPEC levels in surface water to	Surface water samples were collected weekly during the time period (May-June) when the local amphibian populations used the ponds for breeding. The COPEC levels represented typical exposure conditions experienced during breeding.	No effect on risk
benchmarks.	Toxicity-based surface water benchmarks from the literature represented generic but conservative values protective of a small fraction of the most sensitive aquatic species.	Potential for up to moderate overestimation of risk
1	Toxicity-based surface water benchmarks were available for all of the COPECs.	Minimal effect on risk
	HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs.	risk .
	Dissolved metals data were compared to the benchmarks. Dissolved metals represent the fraction responsible for toxicity in aquatic receptors.	Minimal effect on risk .
	The surface water benchmarks did not account for low pH conditions that may affect the tadpoles of local amphibian populations independently from the COPEC levels in the surface water.	Up to moderate underestimation of risk
	Overall potential effect on ecological risk	Slight underestimation
Measurement endpoint 4.B: Expose juvenile fathead minnows (surrogates for	Surface water chemistry varies over time. The surface water samples were collected over three days in late June 2006. These samples may not represent the full range of surface water conditions in the ponds during the amphibian breeding season (May-June).	Potential for up to moderate underestimation of risk
amphibian embryo-larvae) to surface water in the laboratory.	Contaminant sensitivity is species-specific. <i>P. promelas</i> was considered relatively sensitive to metals. It was not known how the response of this species compared to that of the larval stages of the amphibian species breeding in the ponds.	Unknown effect on risk, but potential for underestimation
	Using sensitive juvenile life stages increased the chances of detecting toxicity, whereas the short duration of the test (7 days) decreased the chances of detecting long-term impacts, such as on reproduction.	Small underestimation of risk
	A white floc was observed in the surface water samples used for the daily renewals. It was likely that changes in water chemistry caused dissolved metals to precipitate out of solution thereby affecting the toxicity of the pore water.	Small underestimation of risk
	Overall potential effect on ecological risk	Up to moderate underestimation

fish collected from the target waterways. The belted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values.	Table 7.90: Ov	erview of the major uncertainties associated with the risk characterization for the Ely Copp	er Mine BERA
in-stiru toxicity testing (wood progegis and tadpoles) progegis and tadpoles) progegis and tadpoles) progegis and tadpoles) progedisting support of the physicial and chemical conditions inside the inner Nytex cages may have caused some of the dissolved metals to precipitate out or bind to organic matter, thereby altering toxicity. Contaminant sensitivity is species-specific. It is not known how the response of the embryo-lavaly from no effect to moderate stages of the wood frog (Rana sylvatice) compares to that of other amphibian species (Le., green underestimation for broading. Poverall potential effect on ecological risk [Up to moderate stages of the wood frog (Rana sylvatice) compares to that of other amphibian species (Le., green underestimation for broading. INSECTIVOROUS WILDLIFE RECEPTORS (TREE SWALLOW AND EASTERN SMALL-POOTED BAT)	Measurement Endpoint	Qualitative Description of Uncertainty	Potential Effect on Risk
dissolved metals to precipitate out or bind to organic matter, thereby altering toxicity. Contaminant sensitivity is species-specific. Its not known how the response of the embryo-harval stages of the wood frog (Rana sylvatica) comparies to that of other amphibian species (i.e., green underestimation frog, [Rana clamifans] or eastern newts (Notophthalmus wiridescens) known to use the prods for breeding. Overall potential effect on ecological risk. Up to moderate underestimation. INSECTIVOROUS WILDLIFE RECEPTORS (TREE SWALLOW AND EASTERN SMALL-POOTED BAT) Measurement endocint 5.A. The metal concentrations in emergent aquatic insects used in the exposure calculations were estimated based on generic sediment-to-benthic invertebrate BAFs. It was possible that benthic invertebrates would take up dissolved COPECs directly from the surface water, even though that uptake route was not evaluated. The tree savallow and eastern-small flooted bat were selected as surrogates for all of the insectivorous wildlife receptors that may feed from the waterways affected by past and present entire-related releases. It was assumed that these the totaget species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) inside species represented where gas and species-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, COPEC bioavaliability) were conservative values. The TRVs were conservative and non-species specific. Hos were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK) Measurement endocint 7.A. and 8.A. Food chain modeling (i.e., body weight, ingestion rates) fish collected from the target waterways. The teledic kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the wate	in-situ toxicity testing (wood	populations used the ponds for breeding. The physical-chemical environment in the ponds represented typical exposure conditions experienced in the spring.	
stages of the wood frog (Rana s/walica) compares to that of other amphibian species (i.e., green frog. [Rana clamitans] or eastern newts [Notophthalmus viridescens]) known to use the ponds for breeding. Overall potential effect on ecological risk Up to moderate underestimation		dissolved metals to precipitate out or bind to organic matter, thereby altering toxicity.	1
Measurement endpoint 5.A and 6.A: Food chain modeling. The resposure parameters (e.g., area use factors, COPEC bioavailability) were conservative values. The TRVs were conservative and non-species specific. Overall potential effect on ecological ros is well concentrations will was and that these two target species for all of the proverestimation of risk from multiple COPECs. The test subject of the		stages of the wood frog (Rana sylvatica) compares to that of other amphibian species (i.e., green frog, [Rana clamitans] or eastern newts [Notophthalmus viridescens]) known to use the ponds	1
The metal concentrations in emergent aquatic insects used in the exposure calculations were estimated based on generic sediment-to-benthic invertebrate BAFs. It was possible that benthic invertebrate would take up dissolved COPECs directly from the surface water, even though that uptake route was not evaluated. The tree swallow and eastern-small footed bat were selected as surrogates for all of the insectivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) for tree swallow, no effect on risk for the bat which is a listed species. Other exposure parameters (e.g., area use factors, COPEC bioavailability) were conservative values. The TRVs were conservative and non-species specific. HOs were only calculated for individual COPECs, without considering the potential for cumulative small underestimation of risk from multiple COPECs PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK) The bissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The betted kingfisher and the mink were selected as surrogates for all of the piscivorous wildilfe receptors and the secondary of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) Information of risk represented average and receptor-specific		Overall potential effect on ecological risk	I ' I
and 6.A: Food chain modeling. Sestimated based on generic sediment-to-benthic invertebrate BAFs. It was possible that benthic invertebrates would take up dissolved COPECs directly from the surface water, even though that uptake route was not evaluated. The tree swallow and eastern-small footed bat were selected as surrogates for all of the insectivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on this for the bat which is a listed species on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) in the exposure parameters (e.g., area use factors, COPEC bloavailability) were conservative values. The TRVs were conservative and non-species specific.	INSE	CTIVOROUS WILDLIFE RECEPTORS (TREE SWALLOW AND EASTERN SMALL-FOOTED B	AT)
The tree swallow and eastern-small footed bat were selected as surrogates for all of the insectivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and species-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, COPEC bioavailability) were conservative values. The TRVs were conservative and non-species specific. HOs were only calculated for individual COPECs, without considering the potential for cumulative fish from multiple COPECs Overall potential effect on ecological risk The Issue metal concentrations used in the exposure calculations were those measured in whole fish canded by a said and said from the target waterways. The belieted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk. Fine TRVs were conservative and non-species specific. Moderate overestimation of risk. Moderate overestimation of risk.	and 6.A: Food chain	estimated based on generic sediment-to-benthic invertebrate BAFs. It was possible that benthic invertebrates would take up dissolved COPECs directly from the surface water, even though that	
insectivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) isted species. Other exposure parameters (e.g., area use factors, COPEC bioavailability) were conservative values. The TRVs were conservative and non-species specific. HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs Overall potential effect on ecological risk overestimation of risk and 8.A: Food chain modeling. The tissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The belted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two larget species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative and non-species specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative and non-species specific. HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs			Unknown effect on risk for
on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) Minimal effect on risk represented average and species-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, COPEC bioavailability) were conservative values. The TRVs were conservative and non-species specific. Hos were only calculated for individual COPECs, without considering the potential for cumulative Small underestimation of risk from multiple COPECs Overall potential effect on ecological risk Up to large overestimation PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK) Measurement endpoint 7.A and 8.A: Food chain modeling. The bitsue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The belted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) Minimal effect on risk represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish Moderate overestimation of risk The TRVs were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk from multiple COPECs		insectivorous wildlife receptors that may feed from the waterways affected by past and present	tree swallow; no effect on
represented average and species-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, COPEC bioavailability) were conservative values. The TRVs were conservative and non-species specific. HQs were only calculated for individual COPECs, without considering the potential for cumulative fisk from multiple COPECs Overall potential effect on ecological risk Up to large overestimation of risk and 8.A: Food chain modeling. The tissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The belted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) Minimal effect on risk represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish moderate overestimation of risk from multiple COPECs. HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs.			1
values. The TRVs were conservative and non-species specific. The TRVs were conservative and non-species specific. HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs Overall potential effect on ecological risk Up to large overestimation of risk The tissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The betted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish moderate overestimation of risk The TRVs were conservative values. The TRVs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs			Minimal effect on risk
HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs Overall potential effect on ecological risk properties from multiple COPECs (BELTED KINGFISHER AND MINK) PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK) Measurement endpoint 7.A and 8.A: Food chain modeling. The tissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The betted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish moderate overestimation of risk moderate overestimation of risk moderate overestimation of risk moderate overestimation of risk multiple COPECs. HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs		•	large overestimation of risk
risk from multiple COPECs Overall potential effect on ecological risk Up to large overestimation PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK) Measurement endpoint 7.A and 8.A: Food chain modeling. The tissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The betted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs		The TRVs were conservative and non-species specific.	1
PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK) Measurement endpoint 7.A and 8.A: Food chain modeling.		risk from multiple COPECs	risk
Measurement endpoint 7.A and 8.A: Food chain modeling. The tissue metal concentrations used in the exposure calculations were those measured in whole fish collected from the target waterways. The belted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk rom multiple COPECs		Overall potential effect on ecological risk	
fish collected from the target waterways. The belted kingfisher and the mink were selected as surrogates for all of the piscivorous wildlife receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs		PISCIVOROUS WILDLIFE RECEPTORS (BELTED KINGFISHER AND MINK)	
receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have ecological or societal value. Some of the exposure parameters used in food chain modeling (i.e., body weight, ingestion rates) represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs	Measurement endpoint 7.A and 8.A: Food chain	·	No effect on risk
represented average and receptor-specific values but were not site-specific. Other exposure parameters (e.g., area use factors, 100% bioavailability of COPECs in fish tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs	_	receptors that may feed from the waterways affected by past and present mine-related releases. It was assumed that these two target species represented the receptors on the Site that have	Unknown effect on risk
tissue) were conservative values. The TRVs were conservative and non-species specific. Moderate overestimation of risk HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs			Minimal effect on risk
The TRVs were conservative and non-species specific. Moderate overestimation of risk HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs			
HQs were only calculated for individual COPECs, without considering the potential for cumulative risk from multiple COPECs			Moderate overestimation of risk
Overall potential effect on ecological risk Moderate overestimation			Small underestimation of
		Overall potential effect on ecological risk	Moderate overestimation

SECTION 8.0: SUMMARY AND CONCLUSIONS

8.1 INTRODUCTION

A BERA was performed on the aquatic habitats potentially affected by the Ely Copper Mine Superfund Site, located in Vershire, VT. The Site was used in the 19th and early 20th century for ore mining, ore "roasting", copper smelting, and disposal of waste rock and tailings. Past site investigations showed severe impacts associated with AMD to terrestrial habitats at the Site and to aquatic habitats on and off the Site.

The major aquatic habitats at the Site consist of several small ponds located on the east branch of Ely Brook, and the main stem of Ely Brook itself. Several other Ely Brook tributaries have surface water high in acidity and metals but are too small and/or ephemeral to be considered viable aquatic habitats. The major off-Site aquatic habitats consist of Schoolhouse Brook downstream of the confluence with the main stem of Ely Brook and the EBOR downstream of the confluence with Schoolhouse Brook.

A SLERA performed in 2007 showed the potential for ecological risk to aquatic receptors in all of the aquatic habitats at and downgradient of the Site. This finding prompted the need to proceed with a BERA to further determine the degree and extend of ecological risk in these habitats.

The BERA evaluated the following groups of ecological receptors in one or more of the aquatic habitats:

- Benthic invertebrates
- Water column invertebrates
- Fish
- Amphibians
- Insectivorous birds and mammals
- Piscivorous birds and mammals

8.2 GENERAL CONCLUSIONS OF THE BERA

The general conclusions on the risk associated with the aquatic habitat on- and off-Site are provided in **Attachments 8.1 to 8.8**. These conclusions are summarized below.

8.2.1 Benthic invertebrate community

The potential for ecological risk to the benthic community exposed to Site-related contamination was assessed in all of the aquatic habitats using up to six measurement endpoints (depending on the target habitat), as follows:

- Compare COPEC concentrations in bulk sediment samples to sediment benchmarks (the four ponds, main stem of Ely Brook, Schoolhouse Brook, and the EBOR)
- Compare dissolved COPEC concentrations in sediment pore water samples to surface water benchmarks (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Estimate the bioavailability of divalent metals in sediment based on AVS SEM (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Measure survival and growth in two benthic invertebrate species exposed for 96 hours to sediment pore water samples (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).
- Measure survival and growth in two benthic invertebrate species exposed for 10 and 28 days to bulk sediment samples (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).

• Evaluate the structure and function of the invertebrate community in the field (main stem of Ely Brook, Schoolhouse Brook, and the EBOR).

8.2.1.1 The ponds on the east branch of Ely Brook

Bulk sediment chemistry was the only measurement endpoint available to assess risk to these four aquatic habitats. Severe ecological risk to the benthic invertebrate community was expected in pond 5, based on high Cu concentrations. Ponds 3 and 4 could experience minor ecological risk due to small exceedances of Mn (pond 3) and Cu (pond 4). No risk was expected in pond 2. The reliability of these findings is low because it is based on a single, semi-qualitative LOE.

8.2.1.2 The main stem of Ely Brook

All six measurement endpoints indicated the potential for ecological risk to the benthic invertebrate community in the main stem of Ely Brook. This conclusion was supported by the three "chemical" LOEs (i.e., comparing sediment COPEC levels to benchmarks, comparing pore water COPEC levels to benchmarks, and assessing sediment divalent metal bioavailability based on AVS – SEM) and the three "biological" LOEs (i.e., pore water toxicity testing, bulk sediment toxicity testing, and benthic invertebrate community surveys).

The preponderance of the evidence indicated severe ecological impairment to the benthic invertebrate community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

8.2.1.3 Schoolhouse Brook

Five of the six measurement endpoints indicated the potential for ecological risk to the benthic invertebrate community in the reach of Schoolhouse Brook below the confluence with the main stem of Ely Brook. The three "chemical" LOEs (i.e., comparing sediment COPEC levels to benchmarks, comparing pore water COPEC levels to benchmarks, and assessing sediment divalent metal bioavailability based on AVS – SEM) and two of the three "biological" LOEs (i.e., bulk sediment toxicity testing and benthic invertebrate community surveys) resulted in conclusions of risk. The one exception was pore water acute toxicity testing, which did not show toxicity in the two test species after 96 hours of exposure.

The preponderance of the evidence indicated severe ecological impairment to the benthic invertebrate community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

8.2.1.4 The EBOR

Five of the six measurement endpoints showed a lack of ecological risk to the benthic invertebrate community in the reach of the EBOR below the confluence with Schoolhouse Brook. Two of the three "chemical" LOEs (i.e., comparing sediment COPEC levels to benchmarks and comparing pore water COPEC levels to benchmarks) and the three "biological" LOEs (i.e., pore water toxicity testing, bulk sediment toxicity testing, and benthic invertebrate community surveys) showed no risk. The one exception was assessing sediment AVS – SEM which indicated the potential for divalent metal bioavailability.

The preponderance of the evidence indicated no significant risk to the benthic invertebrate community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

8.2.2 Water column invertebrate community

The potential for ecological risk to the water column invertebrate community exposed to Site-related contamination was assessed only in the four ponds on the east branch of Ely Brook because they represented the only lentic habitat on or off the Site. One measurement endpoint was used, namely comparing dissolved COPEC concentrations in surface water samples to benchmarks. The results of a second measurement endpoint based on toxicity testing of surface water using the water flea were invalidated because the test did not meet minimum test acceptability criteria.

The one available LOE for this receptor group showed a low potential for ecological risk in ponds 2 and 3 (associated with small exceedances of dissolved Mn in both cases), but a high potential for ecological risk in pond 5 (associated mainly with elevated levels of dissolved Cu). No risk was found to water column invertebrates exposed to surface water in pond 4.

The preponderance of the evidence indicated the potential for low level of ecological risk in ponds 2 and 3, and high level of ecological risk in pond 5. The reliability of this conclusion is low because it is based on a single, semi-qualitative LOE.

8.2.3 Fish

The potential for ecological risk to fish populations exposed to Site-related contamination was assessed using up to four measurement endpoints (note: the ponds on the east branch of Ely Brook were excluded from this evaluation because they did not support fish):

- Compare dissolved COPEC concentrations in surface water samples to surface water benchmarks (main stem Ely brook, Schoolhouse Brook, and the EBOR).
- Measure survival and growth in larval fathead minnows exposed for 10 days to surface water samples (main stem of Ely Brook and Schoolhouse Brook).
- Compare COPEC levels measured in whole fish to CBRs (Schoolhouse Brook and the EBOR).
- Evaluate the structure and function of the fish community in the field (Schoolhouse Brook and the EBOR).

8.2.3.1 The main stem of Ely Brook

A potential for severe ecological risk to fish was identified in the main stem of Ely Brook. This conclusion was supported by one "chemical" LOE (i.e., comparing surface water COPEC to benchmarks) and one "biological" LOE (i.e., surface water toxicity testing). A second "biological" LOE (i.e., evaluating the structure and function of the fish community) could not be used because fish were absent from the main stem of Ely Brook, even though it should be able to support fish. This observation gave indirect evidence of the severe impact of AMD on this habitat

The preponderance of the evidence indicated severe ecological impairment to the fish community in the main stem of Ely Brook in response to AMD. The reliability of this conclusion is high because it is based on multiple lines of evidence, including quantitative biological field data.

8.2.3.2 Schoolhouse Brook

All four measurement endpoints indicated the potential for ecological risk to the fish community in the reach of Schoolhouse Brook below the confluence with the main stem of Ely Brook. The one "chemical" LOE (i.e., comparing surface water COPEC levels to benchmarks) and all three "biological" LOEs (i.e., surface water toxicity testing, fish tissue residue analysis, and fish community surveys) resulted in conclusions of risk. Comparing the fish tissue residues to CBRs provided the weakest evidence in support of risk, presumably because fish with higher tissue residues levels (particularly Cu) died off and would not be available for sampling.

Final Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

The preponderance of the evidence indicated severe ecological impairment to the fish community in this habitat in response to AMD. The reliability of this conclusion is high because it is based on multiple LOEs, including quantitative biological field data.

8.2.3.3 The EBOR

Two of the three measurement endpoints showed a lack of ecological risk to the fish community in the reach of the EBOR below the confluence with Schoolhouse Brook. The one "chemical" LOE (i.e., comparing surface water COPEC levels to benchmarks) showed a low potential for ecological risk associated with exposures to dissolved silver and zinc (but not Cu). Both "biological" LOEs (i.e., surface water toxicity testing and fish community surveys) showed a lack of risk.

However, the fish surveys provided contradictory results. The fish sample collected from the EBOR just downstream of the confluence with Schoolhouse Brook and at one downgradient location showed a healthy community. However, fish samples collected at two more downstream locations showed degraded communities. More sampling at one of those two locations the following year showed a healthy community. This evidence was interpreted to mean that this apparent impairment was not systemic and may have been related to a unknown sampling bias.

The preponderance of the evidence indicated no significant risk to the fish community in this habitat in response to AMD. The reliability of this conclusion is moderate-low because the "chemical" LOE indicated a potential for ecological risk and the fish community surveys gave contradictory results.

8.2.4 Amphibians

The potential for ecological risk to amphibians exposed to Site-related contamination was assessed only for the four ponds on the east branch of Ely Brook using up to three measurement endpoints (depending on the pond), as follows:

- Compare dissolved COPEC concentrations in surface water samples to published surface water benchmarks (ponds 2 to 5).
- Measure survival and growth in fathead minnow larvae (surrogates for amphibian larval stages) exposed for 7 days to surface water samples (ponds 4 and 5 only).
- Evaluate hatching and survival of wood frog eggs and tadpoles exposed in the field (ponds 4 and 5 only).

Only the first measurement endpoint was assessed in all four ponds. This single "chemical" LOE showed a low potential for ecological risk in ponds 2 and 3 (associated with exceedances of dissolved Mn in both cases), but a high potential for ecological risk in pond 5 (associated mainly with high levels of dissolved Cu). No risk was found to larval amphibians exposed to surface water in pond 4.

The two remaining measurement endpoints were evaluated only in ponds 4 and 5. These two "biological" LOEs identified ecological risk. The surface waters from these two ponds were toxic to fish larvae tested in the laboratory and to tadpoles (but not frog eggs) exposed in the field. The results of the tadpole study were compromised due to unexpected and persistent mortality in the on- and off-Site reference locations. Only the mortality data generated after the first week of tadpole exposure in the field were used semi-qualitatively in the evaluation.

The preponderance of the evidence indicated the aquatic life stages of amphibians experienced low risk in ponds 2 and 3, but high risk in ponds 4 and 5. The reliability of this conclusion is medium because it is based on multiple lines of evidence, including laboratory and field exposures. However, the field exposures using tadpoles only provided partial results.

8.2.5 Insectivorous birds

The potential for ecological risk to insectivorous birds feeding over the two off-Site waterways was assessed using one endpoint, as follows (note: the four ponds on the east branch of Ely Brook and the main stem of Ely Brook were excluded from this evaluation because they represented too small a feeding habitat):

 Estimate the COPEC residues in winged aquatic insects and use food chain modeling to calculate daily doses to tree swallows for comparison to TRVs (Schoolhouse Brook and the EBOR).

8.2.5.1 Schoolhouse Brook

The available measurement endpoint identified the potential for ecological risk to insectivorous birds feeding over Schoolhouse Brook. Cu was the main risk driver in this habitat, although the risk exceedances were relatively small. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

8.2.5.2 The EBOR

The available measurement endpoint identified the potential for ecological risk to insectivorous birds feeding over the EBOR. Cu was the main risk driver in this habitat, although the risk exceedances were small and unlikely to cause severe long-term impairment to this receptor group. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

8.2.6 <u>Insectivorous mammals</u>

The potential for ecological risk to insectivorous mammals feeding over the two off-Site waterways was assessed using one endpoint, as follows (note: the four ponds on the east branch of Ely Brook and the main stem of Ely Brook were excluded from this evaluation because they represented too small a feeding habitat):

 Estimate the COPEC residues in winged aquatic insects and use food chain modeling to calculate daily doses to small-footed bats for comparison to TRVs (Schoolhouse Brook and the EBOR).

8.2.6.1 Schoolhouse Brook

The available measurement endpoint identified a strong potential for ecological risk to insectivorous mammals feeding over Schoolhouse Brook. Cu was the main risk driver in this habitat. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

8.2.6.2 The EBOR

The available measurement endpoint identified the potential for ecological risk to insectivorous mammals feeding over the EBOR. Cu was the main risk driver in this habitat, although the risk was relatively small. The reliability of this conclusion is low because it is based on unmeasured insect tissue residue values which were estimated based on generic biota-to-sediment accumulation factors.

8.2.7 Piscivorous birds and mammals

The potential for ecological risk to piscivorous birds and mammals feeding in the two off-Site waterways was assessed using one endpoint, as follows (note: the four ponds on the east branch of Ely Brook and the main stem of Ely Brook were excluded from this evaluation because they represented too small a feeding habitat and lacked fish):

 Measure the COPEC residues in fish and use food chain modeling to calculate daily doses to belted kingfishers and mink for comparison to avian and mammalian TRVs (Schoolhouse Brook and the EBOR).

8.2.7.1 Schoolhouse Brook

The available measurement endpoint did not identify the potential for ecological risk to piscivorous birds and mammals feeding over Schoolhouse Brook. The reliability of this conclusion is moderate because it is based on measured fish residue values but using simplistic food chain modeling assumptions.

8.2.7.2 The EBOR

The available measurement endpoint did not identify the potential for ecological risk to piscivorous birds and mammals feeding over the EBOR. The reliability of this conclusion is moderate because it is based on measured fish residue values but using simplistic food chain modeling assumptions.

	Attachment 8.1: Summary of the evidence for ecological risk at pond 2 on the east branch of Ely Brook						
Receptor Group	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments		
	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were unlikely.	The potential for eco risk may be moderately overestimated because the sediment benchmarks were generic and conservative, site bioavailiability was not considered, and exposure concentrations were obtained by strong acid digestion of sediment.	No comment.		
	OVERALL RISK CON	CLUSION	No ecological risk is expected to the benthi	c invertebrate community in pond 2.			
Invertebrates	2.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.		column invertebrate community were possible.	The potential for eco risk may be moderately underestimated, mainly because the water samples were collected mostly in May and June and did not include "high flow" events. However, the surface water benchmarks were generic and conservative.	Manganese had the highest IR CTE chronic HQ. The exceedance was relatively small (HQ = 4.4) and not expected to cause severe impairment.		
		CLUSION	Only minor ecological risk to the water colu	mn invertebrate community is expected in pond 2.			
1	This receptor group was not evaluated for ecological risk in pond 2.	·		-			
	4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low	larval stages of amphibians were possible.	The potential for eco risk may be slightly underestimated, mainly because the surface water benchmarks did not account for potential low pH effects in pond 2 during the breeding season. However, the surface water benchmarks were generic and conservative.	Manganese had the highest IR CTE chronic HQ. The exceedance was relatively small (HQ = 4.4) and not expected to cause severe impairment.		
·	4.B: Evaluate survival and growth in neonates of the fathead minnow (<i>Pimephales promelas</i> , used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples.		Measurement endpoint 4.B was not evaluated in pond 2.	-	_		
	4.C: Evaluate in-situ survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds.	high	Measurement endpoint 4.C was not evaluated in pond 2,		-		
	OVERALL RISK CON	CLUSION	A small potential for ecological risk is expe	cted to the embryo-larval stages of amphibians in pond 2.	<u></u>		
	This receptor group was not evaluated for ecological risk in pond 2.				-		
Mammals	This receptor group was not evaluated for ecological risk in pond 2.			-			
Birds	This receptor group was not evaluated for ecological risk in pond 2.			-			
	This receptor group was not evaluated for ecological risk in pond 2.				-		

COPEC = contaminant of potential concern

CTE = central tendency exposure

HQ = hazard quotient

IR = incremental risk

	Attachment 8.2: Summary of the evidence for ecological risk at pond 3 on the east branch of Ely Brook					
Receptor Group	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments	
Benthic Invertebrates	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.		It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were possible.	The potential for eco risk may be moderately overestimated because the sediment benchmarks were generic and conservative, site bioavailiability was not considered, and exposure concentrations were obtained by strong acid digestion of sediment.	Manganese had the highest IR CTE effect HQ. The exceedance was small (HQ = 2.5) and not expected to cause severe impairment.	
	OVERALL RISK CON	CLUSION	Minor ecological risk is expected to the bent	thic invertebrate community in pond 3.		
Water Column Invertebrates	2.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.			The potential for eco risk may be moderately underestimated, mainly because the water samples were collected mostly in May and June and did not include "high flow" events. However, the surface water benchmarks were generic and conservative.	Manganese had the highest IR CTE chronic HQ. The exceedance was small (HQ = 3.6) and not expected to cause severe impairment.	
	OVERALL RISK CON	CLUSION	Minor ecological risk is expected to the water	er column invertebrate community in pond 3.		
Fish	This receptor group was not evaluated for ecological risk in pond 3.	~-		-		
Amphibians	4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the embryo- larval stages of amphibians were possible.	The potential for eco risk may be slightly underestimated, mainly because the surface water benchmarks did not account for potential low pH effects in pond 3 during the breeding season. However, the surface water benchmarks were generic and conservative.	Manganese had the highest IR CTE chronic HQ. The exceedance was small (HQ = 3.6) and not expected to cause severe impairment.	
	4.B: Evaluate survival and growth in neonates of the fathead minnow (<i>Pimephales promelas</i> , used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples.		Measurement endpoint 4.B was not evaluated in pond 3.	-	-	
	4.C: Evaluate in-situ survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds.	high	Measurement endpoint 4.C was not evaluated in pond 3.		_	
	OVERALL RISK CON	CLUSION	Minor ecological risk is expected to the emb	ryo-larval stages of amphibians in pond 3.		
11	This receptor group was not evaluated for ecological risk in pond 3.				-	
Mammals	This receptor group was not evaluated for ecological risk in pond 3.			-	-	
Birds	This receptor group was not evaluated for ecological risk in pond 3.					
	This receptor group was not evaluated for ecological risk in pond 3.	-				

COPEC = contaminant of potential concern
CTE = central tendency exposure
HQ = hazard quotient
IR = incremental risk

		Atta	achment 8.3: Summary of the evidence for eco	ological risk at pond 4 on the east branch of Ely Brook	
Receptor Group	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments
	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were possible.	The potential for eco risk may be moderately overestimated because the sediment benchmarks were generic and conservative, site bioavailiability was not considered, and exposure concentrations were obtained by strong acid digestion of sediment.	Copper had the highest IR CTE effect HQ. The exceedance was small (HQ = 2.2) and not expected to cause severe impairment.
	OVERALL RISK CON	CLUSION	Minor ecological risk to the benthic inverteb	rate community is expected in pond 4.	L
	2.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low	It was concluded, with a moderate level of confidence, that adverse effects to the water column invertebrate community were possible.	The potential for eco risk may be moderately underestimated, mainly because the water samples were collected mostly in May and June and did not include "high flow" events in early spring and fall. However, the surface water benchmarks were generic and conservative.	No IR CTE chronic HQs exceeded 1.0. Only copper and manganese had chronic IR RME HQ's above 1.0 (6.6 and 1.7, respectively). These relatively small exceedances of a "worst case" exposure scenario are not expected to cause severe impairment.
	OVERALL RISK CON	CLUSION	Minor ecological risk to the water column in	l vertebrates is expected in pond 4.	
	This receptor group was not evaluated for ecological risk in pond 4.				
	4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low		The potential for eco risk may be slightly underestimated, mainly because the surface water benchmarks did not account for potential low pH effects in pond 4 during the breeding season. However, the surface water benchmarks were generic and conservative.	No IR CTE chronic HQs exceeded 1.0. Only copper and manganese had chronic IR RME HQ's above 1.0 (6.6 and 1.7, respectively). These small exceedances of a "worst case" exposure scenario are not expected to cause severe impairment.
	4.B: Evaluate survival and growth in neonates of the fathead minnow (<i>Pimephales promelas</i> , used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples.	medium	It was concluded that adverse effects to the embryo-larval stages of amphibians were present.	The potential for eco risk may be moderately underestimated, mainly because the water samples were collected over three days in late June and did not represent the full exposure potential during the amphibian breeding season (May-June). Metal precipitation in the test water may also have decreased toxicity.	Only 20% of the fathead minnow neonates survived the seven-day exposure to pond 4 surface water.
	4.C: Evaluate in-situ survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds.	high	It was concluded that adverse effects to the embryo-larval stages of amphibians were present.	The potential for eco risk may be moderately underestimated, mainly because the physical and chemical conditions inside the Nytex cages may have caused some of the dissolved metals to precipiate out or bind to organic matter. On the other hand, the exposure was realistic (in-situ in early May) and used a local amphibian species.	Hatching success was no different from that observed in the reference ponds. However, survival of wood frog tadpoles exposed for eight days to pond 4 surface water was poor.
	OVERALL RISK CON	CLUSION	Severe ecological risk to the embryo-larval s	tages of amphibians is expected in pond 4.	
	This receptor group was not evaluated for ecological risk in pond 4.		u	-	
	This receptor group was not evaluated for ecological risk in pond 4.		·		
	This receptor group was not evaluated for ecological risk in pond 4.			-	
Piscivorous Mammals	This receptor group was not evaluated for ecological risk in pond 4.				

COPEC = contaminant of potential ecological concern

CTE = central tendency exposure

HQ = hazard quotient

IR = incremental risk

Attachment 8.4: Summary of the evidence for ecological risk at pond 5 on the east branch of Ely Brook					
Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments	
1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.		confidence, that adverse effects to the benthic invertebrate community were possible.	The potential for eco risk may be moderately overestimated because screening benchmarks are generic and conservative; site bioavailiability was not considered, and the exposure concentrations were obtained by strong acid digestion of sediment.	Copper had the highest IR CTE effect HQ. The exceedance equaled 23 and was expected to cause severe impairment.	
		·			
2.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low	confidence, that adverse effects to the water	because the water samples were collected mostly in May and June and	Copper had the highest IR CTE chronic HQ. The exceedance equaled 45 and was expected to cause severe impairment.	
OVERALL RISK CON	CLUSION	Severe ecological risk to the water column in	vertebrate community is expected in pond 5.	· · · · · · · · · · · · · · · · · · ·	
This receptor group was not evaluated for ecological risk in pond 5.			-	-	
4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the embryo- larval stages of amphibians were possible.	The potential for eco risk may be slightly underestimated, mainly because the surface water benchmarks did not account for potential low pH effects in pond 5 during the breeding season. However, the surface water benchmarks were generic and conservative.	Copper had the highest IR CTE chronic HQ. The exceedance equaled 45 and was expected to cause severe impairment.	
4.B: Evaluate survival and growth in neonates of the fathead minnow (<i>Pimephales promelas</i> , used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples.	medium	It was concluded that adverse effects to the embryo-larval stages of amphibians were present.	The potential for eco risk may be moderately underestimated, mainly because the water samples were collected over three days in late June and did not represent the full exposure potential during the amphibian breeding season (May-June). Metal precipitation in the test water may also have decreased toxicity.	None of the fathead minnow neonates survived the seven-day exposure to pond 5 surface water.	
4.C: Evaluate in-situ survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds.	high	It was concluded that adverse effects to the embryo-larval stages of amphibians were present.	The potential for eco risk may be moderately underestimated, mainly because the physical and chemical conditions inside the Nytex cages could have caused some of the dissolved metals to precipiate out or bind to organic matter. On the other hand, the exposure was realistic (in-situ in early May) and used a local amphibian species.	Hatching success was no different from that observed in the reference ponds. However, 100% of the tadpoles died within a few days of hatching.	
OVERALL RISK CON	CLUSION	Severe ecological risk to the embryo-larval s	tages of amphibians is expected in pond 5.	<u> </u>	
This receptor group was not evaluated for ecological risk in pond 5.			-	-	
This receptor group was not evaluated for ecological risk in pond 5.		***			
This receptor group was not evaluated for ecological risk in pond 5.		-			
This receptor group was not evaluated for ecological risk in pond 5.		***	-	·	
	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks. OVERALL RISK CON 2.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks. OVERALL RISK CON This receptor group was not evaluated for ecological risk in pond 5. 4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water samples to acute and chronic surface water samples to acute and chronic surface water benchmarks. 4.B: Evaluate survival and growth in neonates of the fathead minnow (Pimephales promelas, used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples. 4.C: Evaluate in-situ survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds. OVERALL RISK CON This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5.	Measurement Endpoint 1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks. OVERALL RISK CONCLUSION 2.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks. OVERALL RISK CONCLUSION This receptor group was not evaluated for ecological risk in pond 5. 4.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water samples to acute and chronic surface water samples to acute and chronic surface water benchmarks. 4.B: Evaluate survival and growth in neonates of the fathead minnow (Pimephales promelas, used as surrogates for the embryo-larval life stages of amphibians) exposed in the laboratory for seven days to surface water samples. 4.C: Evaluate in-situ survival and development of wood frog eggs and tadpoles collected from an off-site reference locations and transferred to the on-site ponds. OVERALL RISK CONCLUSION This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5.	Measurement Endpoint WOE Risk Conclusion 1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks. OVERALL RISK CONCLUSION Severe ecological risk to the benthic invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the benthic invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the benthic invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the benthic invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the benthic invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the water column in invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the water column invertebrate community were possible. OVERALL RISK CONCLUSION Severe ecological risk to the water column invertebrate community were possible. It was concluded, with a high level of confidence, that adverse effects to the embryolarval stages of amphibians were possible. It was concluded, with a high level of confidence, that adverse effects to the embryolarval stages of amphibians were possible. It was concluded that adverse effects to the embryolarval stages of amphibians were present. It was concluded that adverse effects to the embryolarval stages of amphibians were present. It was concluded that adverse effects to the embryolarval stages of amphibians were present. OVERALL RISK CONCLUSION Figure ecological risk to the embryolarval stages of amphibians were present. OVERALL RISK CONCLUSION Severe ecological risk to the embryolarval stages of amphibians were present. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5. This receptor group was not evaluated for ecological risk in pond 5.	A. Compare the COPEC levels in bulk search discovered in pond 5.	

COPEC = contaminant of potential ecological concern
CTE = central tendency exposure
HQ = hazard quotient
IR = incremental risk

				for ecological risk in the main stem of Ely Brook	
Receptor Group	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments
Invertebrates	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.		It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were possible.	The potential for ecological risk may be moderately overestimated because screening benchmarks are generic and conservative; site bioavailiability was not considered, and the exposure concentrations were obtained by strong acid digestion of sediment.	Cu had the highest IR CTE effect HQ. The exceedance equaled 19 and was expected to cause severe impairment.
ŀ	1.B: Compare the dissolved COPEC levels in sediment pore water samples to acute and chronic surface water benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were possible.	The potential for ecological risk may be moderately to severely underestimated because the pore water samples were collected only during base flow when COPEC levels were expected to be the lowest. Acidity may also become an issue during high flow.	Mn and Cu had the highest IR CTE chronic HQs. The exceedances equaled 6.4 and 4.7, respectively, and were expected to cause some impairment.
	1.C: Estimate the bioavailability of divalent metals in sediment based on AVS-SEM.	low	It was concluded that adverse effects were possible because SEM exceeded AVS in all nine sediment samples collected for analysis, indicating that the divalent metals could be bioavailable.	The potential for ecological risk may be moderately overestimated. Sediment is not always toxic when SEM exceeds AVS because other (unquantified) binding phases, such as iron oxides, can decrease metal bioavailability.	
į.	D: Measure survival in <i>H. azteca</i> and <i>C. tentans</i> exposed for 96 hours in the laboratory to sediment pore water samples.	medium	It was concluded that adverse effects were present for sensitive species of the benthic invertebrate community.	The potential for ecological risk may be moderately to severely underestimated because the pore water samples were collected only during base flow (August) when COPEC levels were expected to be the lowest. Acidity may also become an issue during high flow.	All three pore water samples were acutely toxic to the amphipod, but none was toxic to the chironomid fly larvae (<i>C. tentans</i>).
	Heasure survival and growth in the benthic invertebrate species <i>H. azteca</i> and <i>C. tentans</i> exposed in the laboratory to bulk sediment samples.		It was concluded that adverse effects were present for sensitive species of the benthic invertebrate community.	The potential for ecological risk may be moderately overestimated because (1) the sediment samples were collected from depositional areas which do not represent the whole stream, and (2) conditions in the test beakers are more static than those present in native substrate	Two of the three samples were toxic to both species. A third sample had the highest metal levels and lowest pH, but was non-toxic. The hard water used for the daily water renewals appeared to have increased pH and caused all dissolved metals to precipitate out.
- 1	1.F: Evaluate the structure and function of the benthic invertebrate community. OVERALL RISK CON-		It was concluded that the benthic invertebrate community was severely impaired in the main stem of Ely Brook. Severe ecological risk to the benthic inverte	The potential for ecological risk was expected to be as reported. The structure of the benthic invertebrate community represents a chronic response of chemical conditions integrated over time. brate community was present in the main stem of Ely Brook.	The health of the benthic community did not improve between 1987 and 2006.
	This receptor group was not evaluated for ecological risk in the main stem of Ely Brook.				No comment.
1	3.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks	low	It was concluded, with a high level of confidence, that adverse effects to the fish community were possible.	The potential for ecological risk was expected to be moderately underestimated because the surface water benchmarks did not account for the effects of potential low pH episodes during certain times of the year.	Cu and Al had the highest IR CTE chronic HQs. The exceedances equaled 281and 68, respectively, and were expected to cause severe impairment.
	3.B: Evaluate survival and growth in juvenile fathead minnows (<i>Pimephales promelas</i>) exposed in the laboratory for seven days to surface water samples.	medium	It was concluded, with a high level of confidence, that adverse effects to the fish community were possible.	The potential for ecological risk was expected to be be moderately underestimated because (1) the samples were collected in late June of 2006 when chemical conditions were less severe than during highflow events, (2) a single fish species was tested for a relatively short period of time, and (3) COPEC levels may have changed in the renewal samples due to metal precipitation.	The one surface water sample collected from the main stem of Ely Brook for toxicity testing resulted in 100% mortality in fathead minnow neonates after seven days of exposure.
,	3.C: Compare COPEC levels measured in whole fish to no effect and effect Critical Body Residues (CBRs).	medium	Measurement endpoint 3.C was not evaluated because no fish live in the main stem of Ely Brook.		No comment.
	3.D: Evaluate the structure and function of the fish community.	high	Measurement endpoint 3.D was not evaluated because no fish live in the main stem of Ely Brook.	***	The lack of fish in the main stem of Ely Brook indicates the presence of high toxicity in its surface waters.

	Attachment 8.5: Summary of the evidence for ecological risk in the main stem of Ely Brook						
Receptor	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments		
Group				·			
	This receptor group was not evaluated for			~-			
*	ecological risk in the main stem of Ely Brook.						
	This receptor group was not evaluated for		***	Alle			
Birds	ecological risk in the main stem of Ely Brook.						
1	 This				<u> </u>		
	This receptor group was not evaluated for ecological risk in the main stem of Ely Brook.				-		
mammaio	Coological fish in the main stem of Life Brook.						
Piscivorous	This receptor group was not evaluated for				•••		
Birds	ecological risk in the main stem of Ely Brook.						
Piscivorous	This receptor group was not evaluated for		-				
Mammals	ecological risk in the main stem of Ely Brook.				•		
	<u> </u>						

AVS = acid-volatile sulfides

COPEC = contaminant of potential ecological concern

CTE = central tendency exposure

IR = incremental risk

HQ = hazard quotient RME = reasonable maximum exposure

SEM = simultaneously extracted metals

			Attachment 8.6: Summary of the eviden	ce for ecological risk in Schoolhouse Brook			
Receptor Group	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments		
	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.			The potential for ecological risk may be moderately overestimated because screening benchmarks are generic and conservative; site bioavailiability was not considered, and the exposure concentrations were obtained by strong acid digestion of sediment.	Copper had the highest IR CTE effect HQ. The exceedance equaled 1.9 and was not expected to cause severe impairment by itself.		
	Compare the dissolved COPEC levels in sediment pore water samples to acute and chronic surface water benchmarks.		It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were possible.	The potential for ecological risk may be moderately to severely underestimated because the pore water samples were collected only during base flow when COPEC levels were expected to be the lowest.	The potential for ecological risk was associated mainly with thallium, which had the only IR CTE chronic HQ $>$ 1.0 (HQ = 6.7).		
	Estimate the bioavailability of divalent metals in sediment based on AVS-SEM.		bioavailable.	The potential for ecological risk may be moderately overestimated. Sediment is not always toxic when SEM exceeds AVS because other (unquantified) binding phases, such as iron oxides, can decrease metal bioavailability.	-		
	1.D: Measure survival in H. azteca and C. tentans exposed for 96 hours in the laboratory to sediment pore water samples.	medium	present because the pore water samples collected from Schoolhouse brook were not	The potential for ecological risk may be moderately to severely underestimated because the pore water samples were collected only during base flow (August) when COPEC levels were expected to be the lowest.	The evidence showed that conditions in the substrate were suitable for sensitive benthic invertebrates under short-term exposures at the time of pore water sampling.		
	1.E: Measure survival and growth in the benthic invertebrate species <i>H. azteca</i> and <i>C. tentans</i> exposed in the laboratory to bulk sediment samples.		tentans .	The potential for ecological risk may be moderately overestimated because (1) the sediment samples were collected from depositional areas which do not represent the whole stream, and (2) conditions in the test beakers were more static than those present in native substrate.	-		
	1.F: Evaluate the structure and function of the benthic invertebrate community.	high	community was severely impaired in	The potential for ecological risk was expected to be as reported. The structure of the benthic invertebrate community represents a chronic response of chemical conditions integrated over time.	The health of the benthic community did not improve appreciably between 1987 and 2006.		
	OVERALL RISK CONC	LUSION	Severe ecological risk to the benthic inverte	brate community was present in Schoolhouse Brook.			
	This receptor group was not evaluated for ecological risk in Schoolhouse Brook.		-	-	-		
Fish	3.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the fish community were possible.	The potential for ecological risk was expected to be be moderately underestimated because the surface water benchmarks did not account for the effects of potential low pH episodes during certain times of the year.	Copper had an IR CTE effect HQ equal to 7.6. This exceedance was likely to cause impairment to the local fish community.		
	3.B: Evaluate survival and growth in juvenile fathead minnows (<i>Pimephales promelas</i>) exposed in the laboratory for seven days to surface water samples.	medium	It was concluded that adverse effects were present for a sensitive fish lifestage.	The potential for ecological risk was expected to be be moderately underestimated because (1) the samples were collected in late June of 2006 when chemical conditions were less severe than during high-flow events, (2) a single fish species was tested for a relatively short period of time, and (3) COPEC levels may have changed in the renewal samples due to metal precipitation.	Fish survival was significantly lower at all four sampling locations in Schoolhouse Brook.		
	3.C: Compare COPEC levels measured in whole fish to no effect and effect Critical Body Residues (CBRs).	medium	It was concluded, with a high level of confidence, that adverse effects to the fish community were possible.	The potential for ecological risk was expected to be moderately overestimated because the fish tissue CBRs were quite conservative. On the other hand, cumulative risk was not considered and fish with higher residue levels may have been absent from the stream because they died out.	brook trout and 1.3 for dace) and not expected to		
	S.D: Evaluate the structure and function of the fish community. OVERALL RISK CON.	high	It was concluded that the fish community was severely impaired in the entire section of Schoolhouse Brook below the confluence with Ely Brook.	The potential for ecological risk was expected to be as reported. The structure of the fish community represents a chronic response of chemical conditions integrated over time.			
t	OVERALL RISK CONCLUSION Severe ecological risk to the fish community was present in Schoolhouse Brook.						

Attachment 8.6: Summary of the evidence for ecological risk in Schoolhouse Brook								
Receptor	Measurement Endpoint	WOE	Risk Conclusion	Major uncertaintles	Comments			
Group		*******************************						
Amphibians	This receptor group was not evaluated for		-		***			
	ecological risk in Schoolhouse Brook.							
			It was concluded, with a high level of	The potential for ecological risk may be overestimated by a large	Cu and Se were the only COPECs with an IR RME			
	the body residues of COPECs in winged		confidence, that adverse effects to	margin because: (1) the COPEC levels in insects were derived using	and CTE effect HQ > 1.0. Both exceedances were			
	aquatic insects; use food chain modeling to			generic BAFs instead of Site-collected tissue samples, (2) some	relatively small (Cu CTE HQ = 6.4 and Se CTE HQ =			
	calculate daily doses from the ingestion of		Brook were possible.	exposure parameters (e.g., AUFs and COPEC bioavailability) were	2.5) and would not be expected to cause severe			
	surface water (total metals) and winged			conservative values for lack of site- or species-specific information,	impairment by themselves.			
1	aquatic insects, and compare these values to TRVs.			and (3) the TRVs were conservative, non species-specific, literature- derived values				
	OVERALL RISK CONCLUSION The potential exists for some ecological risk to insectivorous birds feeding on insects from Schoolhouse Brook.							
			It was concluded, with a high level of	The potential for ecological risk may be overestimated by a large	Cu was the only COPEC with an IR RME and CTE			
	the body residues of COPECs in winged		confidence, that adverse effects to	margin because: (1) the COPEC levels in insects were derived using	effect HQ > 1.0. The CTE effect exceedance was			
	aquatic insects; use food chain modeling to		insectivorous mammals feeding over	generic BAFs instead of Site-collected tissue samples, (2) some	large (HQ = 24) and could cause severe impairment.			
	calculate daily doses from the ingestion of		Schoolhouse Brook were possible.	exposure parameters (e.g., AUFs and COPEC bioavailability) were				
	surface water (total metals) and winged			conservative values for lack of site- or species-specific information,				
1	aquatic insects, and compare these values to TRVs.			and (3) the TRVs were conservative, non species-specific, literature- derived values .				
	IRVS.			derived values .				
	OVERALL RISK CON	CLUSION	The potential exists for severe ecological ri	sk to insectivorous mammals feeding on insects from Schoolhous	e Brook.			
	7.A: Use food chain modeling to calculate		It was concluded, with a moderate level of	The potential for ecological risk may be moderately overestimated	No COPECs had an IR CTE effect HQ > 1.0.			
	daily doses from the ingestion of surface water			because: (1) some exposure parameters (e.g., AUFs and COPEC				
	(total metals) and fish, and compare these		birds were unlikely.	bioavailability) were conservative values for lack of site- or species-				
	values to TRVs.			specific information, and (2) the TRVs were conservative, non				
				species-specific, literature-derived values.				
	OVERALL RISK CONCLUSION Ecological risk is not expected to piscivorous birds feeding on fish from Schoolhouse Brook.							
	8.A: Use food chain modeling to calculate		It was concluded, with a high level of	The potential for ecological risk may be moderately overestimated	No COPECs had an IR CTE effect HQ > 1.0.			
Mammals	daily doses from the ingestion of surface water			because: (1) some exposure parameters (e.g., AUFs and COPEC				
	(total metals) and fish, and compare these		mammals were unlikely.	bioavailability) were conservative values for lack of site- or species-				
	doses to TRVs.			specific information, and (2) the TRVs were conservative, non				
				species-specific, literature-derived values.				
	OVERALL RISK CONCLUSION Ecological risk is not expected to piscivorous mammals feeding on fish from Schoolhouse Brook.							

AUF = area use factor

AVS = acid-volatile sulfides

COPEC = contaminant of potential ecological concern

CTE = central tendency exposure

IR = incremental risk

HQ = hazard quotient
RME = reasonable maximum exposure

SEM = simultaneously extracted metals
TRV = toxicity reference value

	At	tachment	8.7: Summary of the evidence for ecological	risk in the east branch of the Ompompanoosuc River (EBOR)	
Receptor Group	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments
Invertebrates	1.A: Compare the COPEC levels in bulk sediment samples to conservative no effect and effect sediment benchmarks.	low	It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were unlikely.	The potential for ecological risk may be moderately overestimated because screening benchmarks are generic and conservative; site bioavailiability was not considered, and the exposure concentrations were obtained by strong acid digestion of sediment.	No COPECs had IR RME and IR CTE effects HQs > 1.0.
	1.B: Compare the dissolved COPEC levels in sediment pore water samples to acute and chronic surface water benchmarks	low	It was concluded, with a high level of confidence, that adverse effects to the benthic invertebrate community were unlikely.	The potential for ecological risk may be moderately to severely underestimated because the pore water samples were collected only during base flow when COPEC levels were expected to be the lowest.	No COPECs had IR RME and IR CTE chronic HQs > 1.0.
	1.C: Estimate the bioavailability of divalent metals in sediment based on AVS-SEM.	low	It was concluded that risk was possible because SEM exceeded AVS in all five sediment samples collected for analysis, indicating that the divalent metals could be bioavailable.	The potential for ecological risk may be moderately overestimated. Sediment is not always toxic when SEM exceeds AVS because other (unquantified) binding phases, such as iron oxides, can decrease metal bioavailability.	
	D: Measure survival in <i>H. azteca</i> and <i>C. tentans</i> exposed for 96 hours in the laboratory to sediment pore water samples	medium	It was concluded that adverse effects were not present because the pore water sample collected from the EBOR for testing was not acutely toxic to either <i>H. azteca</i> or <i>C. tentans</i> .	The potential for ecological risk may be moderately to severely underestimated because the pore water samples were collected only during base flow (August) when COPEC levels were expected to be the lowest.	Only one pore water sample was tested for toxicity. The evidence showed that conditions in the substrate were suitable for sensitive benthic invertebrates under short-term exposures at the time of pore water sampling.
	Reasure survival and growth in the benthic invertebrate species <i>H. azteca</i> and <i>C. tentans</i> exposed in the laboratory to bulk sediment samples		It was concluded that adverse effects were unlikely because the bulk sediment sample collected from the EBOR for testing was not toxic to either <i>H. azteca</i> or <i>C. tentans</i> .	The potential for ecological risk may be moderately overestimated because (1) the sediment sample was collected from a depositional area which may not represent the whole stream, and (2) conditions in the test beakers were more static than those present in native substrate.	The conclusion of no adverse effect is based on testing a single bulk sediment sample collected in the EBOR about 0.5 miles below the confluence with Schoolhouse Brook. An effect might have been detected if samples had been collected closer to the confluence.
	1.F: Evaluate the structure and function of the benthic invertebrate community	high	It was concluded that the benthic invertebrate community was not impaired in the EBOR. Conditions stayed stable between 2005 and 2006.	The potential for ecological risk was expected to be as reported. The structure of the benthic invertebrate community represents a chronic response of chemical conditions integrated over time.	-
	OVERALL RISK CON	CLUSION	Ecological risk is not expected to the benthi	c invertebrate community in the EBOR.	
Water Column Invertebrates	This receptor group was not evaluated for ecological risk in the EBOR.		_		
Fish	3.A: Compare the dissolved COPEC levels in surface water samples to acute and chronic surface water benchmarks	low	It was concluded, with a high level of confidence, that adverse effects to the fish community were possible.	The potential for ecological risk was expected to be slightly over estimated because the surface water benchmarks are generic, conservative values.	The high levels of dissolved silver (IR CTE chronic HQ = 8.0) and zinc (IR CTE chronic HQ = 6.5) were likely to impair the local fish community.
	3.B: Evaluate survival and growth in juvenile fathead minnows (<i>Pimephales promelas</i>) exposed in the laboratory for seven days to surface water samples.	medium	This measurement endpoint was not evaluated in the EBOR	-	-
	C: Compare COPEC levels measured in whole fish to no effect and effect Critical Body Residues (CBRs).	medium	It was concluded, with a high level of confidence, that adverse effects to the fish community were unlikely.	The potential for ecological risk was expected to be moderately overestimated because the fish tissue CBRs were quite conservative. On the other hand, cumulative risk was not considered and fish with higher residue levels may have been absent from the stream because they died out.	All of the IR RME and CTE effect HQs for brook trout and blacknose dace fell below 1.0
	3.D: Evaluate the structure and function of the fish community	high	It was concluded that the fish community was probably not impaired in the EBOR.	The potential for ecological risk was expected to be as reported. The structure of the fish community represents a chronic response of chemical conditions integrated over time.	This conclusion is weakened by the fact that the fish community response in the EBOR was not consistent over space (different sampling locations in the same year) or over time (same sampling location over different years), in part due to a possible sampling bias.
	OVERALL RISK CON	CLUSION	Ecological risk is not expected to the fish co	ommunity in the EBOR.	

	Attachment 8.7: Summary of the evidence for ecological risk in the east branch of the Ompompanoosuc River (EBOR)							
Receptor	Measurement Endpoint	WOE	Risk Conclusion	Major uncertainties	Comments			
Group								
Amphibians	This receptor group was not evaluated for							
	ecological risk in the EBOR.							
Insectivorous	5.A: Use sediment analytical data to estimate	medium-	It was concluded, with a high level of	The potential for ecological risk may be overestimated by a large	Cu was the only COPEC with an IR CTE effect HQ >			
Birds	the body residues of COPECs in winged	low	confidence, that adverse effects to	margin because: (1) the COPEC levels in insects were derived using	1.0 (HQ = 1.6). This relatively small exceedance would			
	aquatic insects; use food chain modeling to		insectivorous birds were possible.	generic BAFs instead of Site-collected tissue samples, (2) some	not be expected to cause severe impairment by itself			
	calculate daily doses from the ingestion of		·	exposure parameters (e.g., AUFs and COPEC bioavailability) were	to insectivorous birds.			
	surface water (total metals) and winged			conservative values for lack of site- or species-specific information,				
	aquatic insects, and compare these values to			and (3) the TRVs were conservative, non species-specific, literature-				
	TRVs		•	derived values .				
	OVERALL RISK CONCLUSION The potential exists for minor ecological risk to insectivorous birds feeding on insects from the EBOR.							
	6.A: Use sediment analytical data to estimate	medium-	It was concluded, with a high level of	The potential for ecological risk may be overestimated by a large	Cu was the only COPEC with an IR CTE effect HQ >			
Mammals	the body residues of COPECs in winged	low	confidence, that adverse effects to	margin because: (1) the COPEC levels in insects were derived using	1.0 (HQ = 5.9). This exceedance has the potential to			
	aquatic insects; use food chain modeling to		insectivorous mammals were possible.	generic BAFs instead of Site-collected tissue samples, (2) some	cause some impairment to insectivorous mammals.			
	calculate daily doses from the ingestion of		,	exposure parameters (e.g., AUFs and COPEC bioavailability) were				
	surface water (total metals) and winged			conservative values for lack of site- or species-specific information,				
	aquatic insects, and compare these values to		•	and (3) the TRVs were conservative, non species-specific, literature-				
	TRVs			derived values .				
	OVERALL RISK CON	CLUSION	The potential exists for ecological risk to insectivorous mammals feeding on insects from the EBOR.					
Piscivorous	7.A: Use food chain modeling to calculate daily		It was concluded, with a high level of	The potential for ecological risk may be moderately overestimated				
Birds	doses from the ingestion of surface water (total			because: (1) some exposure parameters (e.g., AUFs and COPEC				
	metals) and fish, and compare these values to		birds were unlikely.	bioavailability) were conservative values for lack of site- or species-	,			
	TRVs			specific information, and (2) the TRVs were conservative, non species				
				specific, literature-derived values.				
	OVERALL RISK CONCLUSION Ecological risk is not expected to piscivorous birds feeding on fish caught in the EBOR							
Piscivorous	8.A: Use food chain modeling to calculate daily		It was concluded, with a high level of	The potential for ecological risk may be moderately overestimated				
Mammals	doses from the ingestion of surface water (total			because: (1) some exposure parameters (e.g., AUFs and COPEC				
	metals) and fish, and compare these doses to		mammals were unlikely.	bioavailability) were conservative values for lack of site- or species-				
	TRVs			specific information, and (2) the TRVs were conservative, non species	·			
-				specific, literature-derived values.	· · · · · · · · · · · · · · · · · · ·			
	OVERALL RISK CON	CLUSION	Ecological risk is not expected to piscivoro	us mammals feeding on fish caught in the EBOR	· · · · · · · · · · · · · · · · · · ·			

AUF = area use factor

AVS = acid-volatile sulfides
COPEC = contaminant of potential ecological concern
CTE = central tendency exposure

IR = incremental risk

HQ = hazard quotient

RME = reasonable maximum exposure

SEM = simultaneously extracted metals

TRV = toxicity reference value

SECTION 9.0: REFERENCES

Bechtel Jacobs Company LLC. 1998. Biota-sediment bioaccumulation factors for invertebrates: review and recommendations for the Oak Ridge Reservation. BJC/OR-112. Oak Ridge National Laboratory. Oak Ridge, TN.

Benoit, J.B., J.A. Yoder, E.J. Rellinger, J.T. Ark, and G.D. Keeney. 2005. Prolonged maintenance of water balance by adult females of the American spider beetle, *Mezium affine* Boieldieu, in the absence of food and water resources. J. Insect Physiol. 51:565-573.

Cockbain, A.J. 1961. Water relationships of *Aphis fabae* Scop. during thethered flight. J. Exp. Biol. 38:175-180.

De Graaf, R.M. and D.D. Rudis. 1986. New England wildlife: habitat, natural history, and distribution. General Technical Report NE-108. Broomall, PA: USDA, Forest Service, Northeastern Forest Experiment Station. 491 p.

Gefen E. and A. Ar. 2005. The effect of desiccation on water management and compartmentalization in scorpions: the hepatopancreas as a water reservoir. J. Exp. Biol. 208:1887-1894.

Gibbs, A.G. and L.M. Matzkin. 2001. Evolution of water balance in the genus *Drosophila*. J. Exp. Biol. 204:2332-2338.

Kannan, K., R.G. Smith, R.F. Lee, H.L. Windom, P.T. Heitmuller, J.M. Macauley, and J.K. Summers. 1998. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries. Arch. Environ. Contam. Toxicol. 34:109-118.

Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.

Machin, J., P. Kestler, and G.J. Lampert. 1991. Simultaneous measurements of spiracular and cuticular water losses in *Periplaneta Americana*: implications for whole-animal mass loss studies. J. Exp. Biol. 161:439-453.

MacDonald, D.D., C.G. Ingersoll and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.

Menzie, C., M. Hope Henning, J. Cura, K. Finkelstein, J. Gentile, J. Maughan, D. Mitchell, S. Petron, B. Potocki, S. Svirsky and P. Tyler. 1996. Special report of the Massachusetts weigh-of-evidence workgroup: a weight-of-evidence approach for evaluating ecological risks. Human and Ecol. Risk Assess. 2:277-304.

Nagy, K.A. 2001. Food requirements for wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutrition Abstracts and Reviews, Series B: Lifestock Feeds and Feeding, Volume 71, No. 10.

Okasha, A.Y.K. 1972. Water relations in an insect, *Thermobia domestica*. II. Relationships between water content, water uptake from subsaturated atmospheres and water loss. J. Exp. Biol. 57:285-296.

Persaud, D., R. Jaagumagi and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy.

Reynolds, S.E. and K. Bellward. 1989. Water balance in *Manduca sexta* caterpillars: water recycling from the rectum. J. Exp. Biol. 141:33-45.

Final Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

Robertson, R.J., B.J. Stutchbury, and R.R. Cohen. 1992. Tree swallow (*Tachycineta bicolor*). The Birds of North America, No. 11 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, and the American Ornithologists' Union, Washington, DC.

Sample, B.E. and G.W. Suter. 1994. Estimating exposure of terrestrial wildlife to contaminants. ES/ER/TN-125. Oak Ridge National Laboratory, Oak Ridge, TN.

Seal, R.R., II, Kiah, R.G., Piatak, N.M., Besser, J.M., Coles, J.F., Hammarstrom, J.M., Argue, D.M., Levitan, D.M., Deacon, J.R., and Ingersoll, C.G. 2010. Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont: U.S. Geological Survey Scientific Investigations Report 2010–5084, 131 p.

Shaw, J. 1958. Solute and water balance in the muscle fibers of the east African fresh-water crab, *Potamon niloticus* (M. Edw.). J. Exp. Biol. 36:145-153.

Sibley, D.A. 2000. The Sibley guide to birds. New York: Alfred A. Knopf. 544 p.

Staddon, B.W. 1964. Water balance in *Corixa dentipes* (Thoms.) (Hemiptera, Heteroptera). J. Exp. Biol. 41:609-619.

State of Vermont. 2006. Vermont Water Quality Standards. Available at http://www.nrb.state.vt.us/wrp/rules.htm.

Sutcliff, D.W. 1961. Studies on salt and water balance in caddis larvae (Trichoptera): I. Osmotic and ionic regulation of body fluids in *Limnephilus affinis* Curtis. J. Exp. Biol. 38:501-519.

Sutcliffe, D.W. 1971. Regulation of water and some ions in Gammarids (Amphipoda). II. *Gammarus pulex* (L.). J. Exp. Biol. 55:345-355.

Suter, G.W. and C.L. Tsao. 1996. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. Oak Ridge National Laboratory. ES/ER/TM-96/R2.

Taylor, E.W., R. Tyler-Jones, and M.G. Wheatly. 1987. The effects of aerial exposure on the distribution of body water and ions in the freshwater crayfish *Austropotamobius pallipes* (Lereboullet). J. Exp. Biol. 128:307-322.

URS. 2006. Baseline Ecological Risk Assessment, Elizabeth Mine Site, South Strafford, Vermont.

USEPA. 1993. Wildlife Exposure Factors Handbook. EPA/600/R-93/187.

USEPA. 1997. Ecological Risk Assessment Guidance for Superfund (ERAGS): Process for Designing and Conducting Ecological Risk Assessments. EPA/630/R-95/022F.

USEPA. 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.

USEPA. 2000. Guidance for the Data Quality Objective Process. EPA/600/R-96/055.

USEPA. 2001a The Role of Screening-Level Risk Assessment and Refining Contaminants of Concern in Baseline Ecological Risk Assessments. EPA 540/F-01/014.

USEPA. 2001b Planning for Ecological Risk Assessment: Developing Management Objectives. EPA/630/R-01/001A.

USEPA. 2002. Principles for Managing Contaminated Sediment Risks at Hazardous waste Sites. OSWER Directive 9285.6-08.

Final Baseline Ecological Risk Assessment Ely Copper Mine Superfund Site Vershire, VT

USEPA. 2005a. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. EPA/540/R-05/012.

USEPA. 2005b. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, copper, lead, nickel, silver, and zinc). EPA/600/R-02/011.

USEPA. 2006. National Recommended Water Quality Criteria. Office of Water. Office of Science and Technology (available from http://epa.gov/waterscience/criteria/wqctable/nrwqc-2006.pdf).

USEPA. 2007. Pro UCL. Office of Research and Development. April 2007. (available from http://www.epa.gov/nerlesd1/tsc/software.htm)

USGS. 2004. Geochemical characterization of mine waste at the Ely Copper Mine Superfund Site, Orange County, Vermont. Open-File Report 2004-1248.

Williams, J.B. and R.E. Lee. 2005. Plant senescence cues entry into diapause in the gall fly *Eurosta Solidaginis*: resulting metabolic depression is critical for water conservation. J. Exp. Biol. 208:4437-4444.

Yoder, J.A. and D.L. Denlinger. 1991. Water balance in flesh fly pupae and water vapor absorption associated with diapause. J. Exp. Biol. 157:273-286.